logo
AAT Bioquest

Amplite® Fluorimetric NADH Assay Kit *Red Fluorescence*

NADH dose response was measured with Amplite® Fluorimetric NADH Assay Kit in a 96-well solid black plate using a NOVOStar microplate reader (BMG Labtech). RFU measured over Ex/Em = 540/590 nm.
NADH dose response was measured with Amplite® Fluorimetric NADH Assay Kit in a 96-well solid black plate using a NOVOStar microplate reader (BMG Labtech). RFU measured over Ex/Em = 540/590 nm.
NADH dose response was measured with Amplite® Fluorimetric NADH Assay Kit in a 96-well solid black plate using a NOVOStar microplate reader (BMG Labtech). RFU measured over Ex/Em = 540/590 nm.
Ordering information
Price
Catalog Number
Unit Size
Quantity
Add to cart
Additional ordering information
Telephone1-800-990-8053
Fax1-800-609-2943
Emailsales@aatbio.com
InternationalSee distributors
Bulk requestInquire
Custom sizeInquire
ShippingStandard overnight for United States, inquire for international
Request quotation
Storage, safety and handling
H-phraseH303, H313, H333
Hazard symbolXN
Intended useResearch Use Only (RUO)
R-phraseR20, R21, R22
UNSPSC12352200

OverviewpdfSDSpdfProtocol


Nicotinamide adenine dinucleotide (NAD+) and nicotinamide adenine dinucleotide phosphate (NADP+) are two important cofactors found in cells. NADH is the reduced form of NAD+, and NAD+ is the oxidized form of NADH. It forms NADP with the addition of a phosphate group to the 2' position of the adenyl nucleotide through an ester linkage. NADP is used in anabolic biological reactions, such as fatty acid and nucleic acid synthesis, which require NADPH as a reducing agent. In chloroplasts, NADP is an oxidizing agent important in the preliminary reactions of photosynthesis. The NADPH produced by photosynthesis is then used as reducing power for the biosynthetic reactions in the Calvin cycle of photosynthesis. The traditional NAD/NADH and NADP/NADPH assays are done by monitoring of NADH or NADPH absorption at 340 nm. This method suffers low sensitivity and high interference since the assay is done in the UV range that requires expensive quartz microplate. This Amplite® NADH Assay Kit provides a convenient method for sensitive detection of NADH. The enzymes in the system specifically recognize NADH in an enzyme cycling reaction. The enzyme cycling reaction significantly increases detection sensitivity.

Platform


Fluorescence microplate reader

Excitation540 nm
Emission590 nm
Cutoff570 nm
Recommended plateSolid black

Components


Example protocol


AT A GLANCE

Protocol summary

  1. Prepare NADH working solution (50 µL)
  2. Add NADH standards or test samples (50 µL)
  3. Incubate at room temperature for 15 minutes - 2 hours
  4. Monitor fluorescence intensity at Ex/Em = 540/590 nm

Important notes
Thaw one of each kit component at room temperature before starting the experiment.

PREPARATION OF STOCK SOLUTION

Unless otherwise noted, all unused stock solutions should be divided into single-use aliquots and stored at -20 °C after preparation. Avoid repeated freeze-thaw cycles.

1. NADH standard solution (1 mM):
Add 200 µL of PBS buffer into the vial of NADH standard (Component C) to make 1 mM (1 nmol/µL) NADH standard solution.

PREPARATION OF STANDARD SOLUTION

NADH standard

For convenience, use the Serial Dilution Planner: https://www.aatbio.com/tools/serial-dilution/15261

Take the NADH standard solution and use PBS buffer to generate 100 µM NADH standard solution (NS7). Then perform 1:3 serial dilutions to get remaining serial dilutions of NADH standard (NS6 - NS1). Note: Diluted NADH standard solution is unstable, and should be used within 4 hours.

PREPARATION OF WORKING SOLUTION

Add 10 mL of Amplite™ NADH Assay Buffer (Component B) to the bottle of NADH Recycling Enzyme Mixture (Component A) and mix well. Note: This NADH working solution is enough for two 96-well or four 384-well plates. The working solution is not stable, use it promptly and avoid direct exposure to light.

SAMPLE EXPERIMENTAL PROTOCOL

Table 1. Layout of NADH standards and test samples in a solid black 96-well microplate. NS = NADH standard (NS1 - NS7, 0.1 to 100 µM); BL = blank control; TS = test sample.

BLBLTSTS
NS1NS1......
NS2NS2......
NS3NS3  
NS4NS4  
NS5NS5  
NS6NS6  
NS7NS7  

Table 2. Reagent composition for each well.

WellVolumeReagent
NS1 - NS750 µLSerial Dilution (0.1 to 100 µM)
BL50 µLPBS
TS50 µLTest Sample
  1. Prepare NADH standards (NS), blank controls (BL), and test samples (TS) according to the layout provided in Table 1 and Table 2. For a 384-well plate, use 25 µL of reagent per well instead of 50 µL.

  2. Add 50 µL of NADH working solution into each well of NADH standard, blank control, and test samples to make the total NADH assay volume of 100 µL/well. For a 384-well plate, add 25 µL of NADH working solution into each well instead, for a total volume of 50 µL/well.

  3. Incubate the reaction at room temperature for 15 minutes to 2 hours, protected from light.

  4. Monitor the fluorescence increase with a fluorescence plate reader at Excitation = 530 - 570 nm, Emission = 590 - 600 nm (optimal at Ex/Em = 540/590 nm, cutoff=570 nm). Note: The contents of the plate can also be transferred to a white clear bottom plate and read by an absorbance microplate reader at the wavelength of 576 ± 5 nm. However, the absorption detection will have a lower sensitivity compared to that of the fluorescence reading. For cell based NADH measurements, ReadiUse™ mammalian cell lysis buffer *5X* (Cat No. 20012) is recommended to use for lysing the cells.

Images


Citations


View all 59 citations: Citation Explorer
Enhanced 1, 3-propanediol production in Klebsiella pneumoniae by a combined strategy of strengthening the TCA cycle and weakening the glucose effect
Authors: Lu, Xinyao and Ren, Shunli and Lu, Jingzheng and Zong, Hong and Song, Jian and Zhuge, Bin
Journal: Journal of applied microbiology (2018)
Resveratrol attenuates excessive ethanol exposure induced insulin resistance in rats via improving NAD+/NADH ratio
Authors: Luo, Gang and Huang, Bingqing and Qiu, Xiang and Xiao, Lin and Wang, Ning and Gao, Qin and Yang, Wei and Hao, Liping
Journal: Molecular Nutrition & Food Research (2017)
Epigenetic regulation of Runx2 transcription and osteoblast differentiation by nicotinamide phosphoribosyltransferase
Authors: Ling, Min and Huang, Peixin and Islam, Shamima and Heruth, Daniel P and Li, Xuanan and Zhang, Li Qin and Li, Ding-You and Hu, Zhaohui and Ye, Shui Qing
Journal: Cell & Bioscience (2017): 27
MCU-dependent mitochondrial Ca2+ inhibits NAD+/SIRT3/SOD2 pathway to promote ROS production and metastasis of HCC cells
Authors: Ren, T and Zhang, H and Wang, J and Zhu, J and Jin, M and Wu, Y and Guo, X and Ji, L and Huang, Q and Yang, H and others, undefined
Journal: Oncogene (2017)
Metabolic and molecular insights into an essential role of nicotinamide phosphoribosyltransferase
Authors: Zhang, Li Q and Van Ha, undefined and el, Leon and Xiong, Min and Huang, Peixin and Heruth, Daniel P and Bi, Charlie and Gaedigk, Roger and Jiang, Xun and Li, Ding-You and Wyckoff, Gerald and others, undefined
Journal: Cell Death & Disease (2017): e2705
Cytosolic Redox Status of Wine Yeast (Saccharomyces Cerevisiae) under Hyperosmotic Stress during Icewine Fermentation
Authors: Yang, Fei and Heit, Caitlin and Inglis, Debra L
Journal: Fermentation (2017): 61
Celastrol attenuates angiotensin II mediated human umbilical vein endothelial cells damage through activation of Nrf2/ERK1/2/Nox2 signal pathway
Authors: Li, Miao and Liu, Xin and He, Yongpeng and Zheng, Qingyin and Wang, Min and Wu, Yu and Zhang, Yuanpeng and Wang, Chaoyun
Journal: European Journal of Pharmacology (2017): 124--133
Pyrroloquinoline Quinone, a Redox-active o-Quinone, Stimulates Mitochondrial Biogenesis by Activating SIRT1/PGC-1α Signaling Pathway
Authors: Saihara, Kazuhiro and Kamikubo, Ryosuke and Ikemoto, Kazuto and Uchida, Koji and Akagawa, Mitsugu
Journal: Biochemistry (2017)
Engineering a glycerol utilization pathway in Corynebacterium glutamicum for succinate production under O2 deprivation
Authors: Wang, Chen and Cai, Heng and Chen, Zhongjun and Zhou, Zhihui
Journal: Biotechnology letters (2016): 1791--1797