logo
AAT Bioquest

Buccutite™ Rapid PE Antibody Labeling Kit *Microscale Optimized for Labeling 100 ug Antibody Per Reaction*

Flow cytometry analysis of CD4 PBMC populations. Anti-human CD4 monoclonal antibody was labeled using Buccutite™ Rapid PE Antibody Labeling Kit (Cat No. 1310) or Lightning-Link® Rapid PE Antibody Labeling Kit according to manufacturers’ instructions. CD4 PBMC populations were then stained and the fluorescence signal was monitored using an ACEA NovoCyte flow cytometer in the PE channel.
Flow cytometry analysis of CD4 PBMC populations. Anti-human CD4 monoclonal antibody was labeled using Buccutite™ Rapid PE Antibody Labeling Kit (Cat No. 1310) or Lightning-Link® Rapid PE Antibody Labeling Kit according to manufacturers’ instructions. CD4 PBMC populations were then stained and the fluorescence signal was monitored using an ACEA NovoCyte flow cytometer in the PE channel.
Flow cytometry analysis of CD4 PBMC populations. Anti-human CD4 monoclonal antibody was labeled using Buccutite™ Rapid PE Antibody Labeling Kit (Cat No. 1310) or Lightning-Link® Rapid PE Antibody Labeling Kit according to manufacturers’ instructions. CD4 PBMC populations were then stained and the fluorescence signal was monitored using an ACEA NovoCyte flow cytometer in the PE channel.
Flow cytometry analysis of HL-60 cells stained with 1ug/ml Mouse IgG control (Green) or with 1ug/ml mouse Anti-Human HLA-ABC (W6/32 mAb)  (Red) and then followed by Goat Anti-Mouse IgG-RPE conjugate prepared with Buccutite™ Rapid RPE Antibody Labeling Kit (Cat#1310). The fluorescence signal was monitored using ACEA NovoCyte flow cytometer in the RPE channel.
Ordering information
Price
Catalog Number
Unit Size
Quantity
Add to cart
Additional ordering information
Telephone1-800-990-8053
Fax1-800-609-2943
Emailsales@aatbio.com
InternationalSee distributors
Bulk requestInquire
Custom sizeInquire
ShippingStandard overnight for United States, inquire for international
Request quotation
Spectral properties
Correction Factor (280 nm)0.175
Extinction coefficient (cm -1 M -1)1960000
Excitation (nm)565
Emission (nm)574
Quantum yield0.82
Storage, safety and handling
H-phraseH303, H313, H333
Hazard symbolXN
Intended useResearch Use Only (RUO)
R-phraseR20, R21, R22
UNSPSC12171501
Related products
Buccutite™ Peroxidase (HRP) Antibody Conjugation Kit *Optimized for Labeling 100 ug Protein*
Buccutite™ Rapid Protein Crosslinking Kit *Microscale Optimized for Crosslinking 100 ug Antibody Per Reaction*
Buccutite™ Rapid PE-Cy5.5 Tandem Antibody Labeling Kit *Microscale Optimized for Labeling 100 ug Antibody Per Reaction*
Buccutite™ Rapid PE-Cy7 Tandem Antibody Labeling Kit *Microscale Optimized for Labeling 100 ug Antibody Per Reaction*
Buccutite™ Rapid PE-Texas Red Tandem Antibody Labeling Kit *Microscale Optimized for Labeling 100 ug Antibody Per Reaction*
Buccutite™ Rapid PE-Cy5 Tandem Antibody Labeling Kit *Microscale Optimized for Labeling 100 ug Antibody Per Reaction*
Buccutite™ Rapid APC-Cy5.5 Tandem Antibody Labeling Kit *Microscale Optimized for Labeling 100 ug Antibody Per Reaction*
Buccutite™ Rapid APC-iFluor® 700 Tandem Antibody Labeling Kit *Microscale Optimized for Labeling 100 ug Antibody Per Reaction*
Buccutite™ Rapid APC-Cy7 Tandem Antibody Labeling Kit *Microscale Optimized for Labeling 100 ug Antibody Per Reaction*
Buccutite™ Rapid PE-Cy5 Tandem Antibody Labeling Kit *Microscale Optimized for Labeling 25 ug Antibody Per Reaction*
Buccutite™ Rapid PE-Cy5.5 Tandem Antibody Labeling Kit *Microscale Optimized for Labeling 25 ug Antibody Per Reaction*
Buccutite™ Rapid PE-Cy7 Tandem Antibody Labeling Kit *Microscale Optimized for Labeling 25 ug Antibody Per Reaction*
Buccutite™ Rapid PE-Texas Red Tandem Antibody Labeling Kit *Microscale Optimized for Labeling 25 ug Antibody Per Reaction*
Buccutite™ Rapid APC-iFluor® 700 Tandem Antibody Labeling Kit *Microscale Optimized for Labeling 25 ug Antibody Per Reaction*
Buccutite™ Rapid APC-Cy5.5 Tandem Antibody Labeling Kit *Microscale Optimized for Labeling 25 ug Antibody Per Reaction*
Buccutite™ Rapid APC-Cy7 Tandem Antibody Labeling Kit *Microscale Optimized for Labeling 25 ug Antibody Per Reaction*
Buccutite™ Peroxidase (HRP) Antibody Conjugation Kit *Optimized for Labeling 25 ug Protein*
Buccutite™ Peroxidase (HRP) Antibody Conjugation Kit *Optimized for Labeling 1 mg Protein*
Buccutite™ MTA, NHS ester
Buccutite™ FOL scavenger
Buccutite™ MTA scavenger
Buccutite™ MTA-Dye 650
Buccutite™ FOL-Dye 650
Buccutite™ ALP (Alkaline Phosphatase) Antibody Conjugation Kit *Optimized for Labeling 25 ug Protein*
Buccutite™ ALP (Alkaline Phosphatase) Antibody Conjugation Kit *Optimized for Labeling 100 ug Protein*
Buccutite™ ALP (Alkaline Phosphatase) Antibody Conjugation Kit *Optimized for Labeling 1 mg Protein*
Buccutite™ Poly-HRP Antibody Conjugation Kit
Buccutite™ FOL, maleimide [FOLM]
Buccutite™ MTA, maleimide [MTAM]
Buccutite™ FOL, NHS ester
Buccutite™ Rapid APC-iFluor® 750 Tandem Antibody Labeling Kit *Microscale Optimized for Labeling 25 ug Antibody Per Reaction*
Buccutite™ Rapid trFluor™ D2 Acceptor Antibody Labeling Kit *Microscale Optimized for Labeling 100 ug Antibody Per Reaction*
Buccutite™ Streptavidin Antibody Conjugation Kit *Optimized for Labeling 25 ug Protein*
Buccutite™ Streptavidin Antibody Conjugation Kit *Optimized for Labeling 100 ug Protein*
Buccutite™ Streptavidin Antibody Conjugation Kit *Optimized for Labeling 1 mg Protein*
Buccutite™ Rapid Oligo Antibody Conjugation Kit *Optimized for Labeling 100 ug Protein*
Buccutite™ Rapid Crosslinked APC Antibody Labeling Kit *Production Scale Optimized for Labeling 1 mg Antibody Per Reaction*
Buccutite™ Rapid PE-Cy7 Tandem Antibody Labeling Kit *Production Scale Optimized for Labeling 1 mg Antibody Per Reaction*
Buccutite™ Rapid PE-Texas Red Tandem Antibody Labeling Kit *Production Scale Optimized for Labeling 1 mg Antibody Per Reaction*
Buccutite™ Rapid PE-Cy5 Tandem Antibody Labeling Kit *Production Scale Optimized for Labeling 1 mg Antibody Per Reaction*
Buccutite™ Rapid APC-iFluor® 700 Tandem Antibody Labeling Kit *Production Scale Optimized for Labeling 1 mg Antibody Per Reaction*
Buccutite™ Rapid APC-Cy5.5 Tandem Antibody Labeling Kit *Production Scale Optimized for Labeling 1 mg Antibody Per Reaction*
Buccutite™ Rapid APC-Cy7 Tandem Antibody Labeling Kit *Production Scale Optimized for Labeling 1 mg Antibody Per Reaction*
Show More (33)

OverviewpdfSDSpdfProtocol


Correction Factor (280 nm)
0.175
Extinction coefficient (cm -1 M -1)
1960000
Excitation (nm)
565
Emission (nm)
574
Quantum yield
0.82
R-Phycoerythrin (PE) is an orange fluorescent protein which has an excitation wavelength of 565 nm and an emission wavelength of 575 nm. AAT Bioquest offers this Buccutite™ rapid labeling kit to facilitate the PE conjugations to antibodies and other proteins such as streptavidin and other secondary reagents. Buccutite™ PE Conjugation Kit provides a robust and convenient method to conjugate your antibodies with PE. The kit includes a preactivated PE and reaction buffer. The conjugated antibody can be used in flow cytometry, WB, ELISA and IHC applications. This kit is sufficient for 2 labeling reactions, each up to 100 ug of antibody. Considering the large size of PE (240 kDa), the amount of antibody used in a labeling reaction must always be less than the amount of PE. The best ratio for any new antibody reagent must be determined by experimentation but 50-60 ug of IgG antibody for every 100 ug of PE usually gives optimal results. Our kit provides preactivated PE to facilitate the PE conjugations to antibodies and other proteins such as streptavidin and other secondary reagents. Our preactivated PE is ready to conjugate, giving much higher yield than the conventionally tedious SMCC-based conjugation chemistry. In addition, our preactivated PE is conjugated to a protein via its amino group that is abundant in proteins while SMCC chemistry targets the thiol group that has to be regenerated by the reduction of antibodies.

Components


Example protocol


AT A GLANCE

Protocol Summary
  1. Add 5 µl Reaction Buffer (Component C) into antibody (100 µl)
  2. Add the antibody solution into Buccutite™ MTA vial (Component B)
  3. Incubate at room temperature for 30 minutes
  4. Mix with 50 µL Buccutite™ FOL-Activated PE (Component A)
  5. Incubate at room temperature for 60 minutes 
Important      Upon receipt, store the kit at 4 oC. When stored properly, the kit should be stable for six months. Alternatively, Component B can be stored at -20°C. Do not freeze Buccutite™ FOL-Activated PE (Component A), Reaction Buffer (Component C). Warm all the components and centrifuge the vials briefly before opening, and immediately prepare the required solutions before starting your conjugation. The following SOP is an example for labeling goat anti-mouse IgG antibody.

PREPARATION OF WORKING SOLUTION

Antibody working solution
For labeling 100 µg antibody (assuming the target antibody concentration is 1 mg/mL), mix 5 µL (5% of the total reaction volume) of Reaction Buffer (Component C) with 100 µL of the target antibody solution.
Note     If you have a different concentration, adjust the antibody volume accordingly to make ~100 µg antibody available for your labeling reaction.
Note     The antibody should be dissolved in 1X phosphate buffered saline (PBS), pH 7.2-7.4; If the antibody is dissolved in glycine buffer, it must be dialyzed against 1X PBS, pH 7.2-7.4, or use ReadiUse™ 10KD Spin Filter (Cat. # 60502 from AAT Bioquest) to remove free amines or ammonium salts (such as ammonium sulfate and ammonium acetate) that are widely used for antibody precipitation.
Note     Impure antibodies or antibodies stabilized with bovine serum albumin (BSA) or gelatin will not be labeled well.
Note     The antibody –Buccutite™ MTA reaction efficiency is significantly reduced if the antibody concentration is less than 1 mg/mL. For optimal labeling efficiency the final antibody concentration range of 1-10 mg/mL is recommended.

SAMPLE EXPERIMENTAL PROTOCOL

Run Antibody-Buccutite™ MTA reaction
  1. Add the antibody working solution directly into the vial of Buccutite ™ MTA (Component B), and mix them well by repeatedly pipetting for a few times or vortex the vial for a few seconds.
  2. Keep the antibody- Buccutite ™ MTA reaction mixture at room temperature for 30 - 60 minutes.
    Note     The antibody-Buccutite™ MTA reaction mixture can be rotated or shaken for longer time if desired. 

Make antibody-PE conjugation
  1. Make Buccutite™ FOL-Activated PE solution by adding 50 µL ddH2O into the vial of Buccutite™ FOL-Activated PE (Component A), mix well by repeatedly pipetting for a few times or vortex the vial for a few seconds.
  2. Mix whole vial of Buccutite™ FOL-Activated PE solution into the antibody-Buccutite™ MTA solution, mix well and rotating the mixture for 1 hour at room temperature.
  3. The antibody-PE conjugate is now ready to use.
    Note     For immediate use, the antibody-PE conjugate need be diluted with the buffer of your choice. 

Storage of Antibody-PE Conjugate
The antibody conjugate should be stored at > 0.5 mg/mL in the presence of a carrier protein (e.g., 0.1% bovine serum albumin). The Antibody-PE conjugate solution could be stored at 4 °C for two months without significant change when stored in the presence of 2 mM sodium azide and kept from light. For longer storage, the antibody-PE conjugates could be lyophilized and stored at ≤ –20 °C.
Table 1.Available fluorophores at AAT Bioquest Buccutite™ Rapid Antibody Labelling Kits
Cat# Labels Ex (nm) Em (nm)
1310 PE 565 575
1322 PE-Cy5 565 674
1316 PE-Cy5.5 565 700
1317 PE-Cy7 565 780
1318 PE-Texas Red 565 600
1311 APC 651 662
1319 APC-iFluor™ 700 651 713
1320 APC-Cy5.5 651 700
1321 APC-Cy7 651 780
1325 PerCP 482 677

Spectrum


Open in Advanced Spectrum Viewer
spectrum

Spectral properties

Correction Factor (280 nm)0.175
Extinction coefficient (cm -1 M -1)1960000
Excitation (nm)565
Emission (nm)574
Quantum yield0.82

Images


References


View all 46 references: Citation Explorer
Chromophore attachment to phycobiliprotein beta-subunits: phycocyanobilin:cysteine-beta84 phycobiliprotein lyase activity of CpeS-like protein from Anabaena Sp. PCC7120
Authors: Zhao KH, Su P, Li J, Tu JM, Zhou M, Bubenzer C, Scheer H.
Journal: J Biol Chem (2006): 8573
Excitation energy transfer from phycobiliprotein to chlorophyll d in intact cells of Acaryochloris marina studied by time- and wavelength-resolved fluorescence spectroscopy
Authors: Petrasek Z, Schmitt FJ, Theiss C, Huyer J, Chen M, Larkum A, Eichler HJ, Kemnitz K, Eckert HJ.
Journal: Photochem Photobiol Sci (2005): 1016
Single-molecule spectroscopy selectively probes donor and acceptor chromophores in the phycobiliprotein allophycocyanin
Authors: Loos D, Cotlet M, De Schryver F, Habuchi S, Hofkens J.
Journal: Biophys J (2004): 2598
Isolation and characterisation of phycobiliprotein rich mutant of cyanobacterium Synechocystis sp
Authors: Prasanna R, Dhar DW, Dominic TK, Tiwari ON, Singh PK.
Journal: Acta Biol Hung (2003): 113
Evaluation of Tolypothrix germplasm for phycobiliprotein content
Authors: Prasanna R, Prasanna BM, Mohammadi SA, Singh PK.
Journal: Folia Microbiol (Praha) (2003): 59
Co-ordinated expression of phycobiliprotein operons in the chromatically adapting cyanobacterium Calothrix PCC 7601: a role for RcaD and RcaG
Authors: Noubir S, Luque I, Ochoa de Alda JA, Perewoska I, T and eau de Marsac N, Cobley JG, Houmard J.
Journal: Mol Microbiol (2002): 749
Phycobiliprotein genes of the marine photosynthetic prokaryote Prochlorococcus: evidence for rapid evolution of genetic heterogeneity
Authors: Ting CS, Rocap G, King J, Chisholm SW.
Journal: Microbiology (2001): 3171
Phycobiliprotein-Fab conjugates as probes for single particle fluorescence imaging
Authors: Triantafilou K, Triantafilou M, Wilson KM.
Journal: Cytometry (2000): 226
Novel activity of a phycobiliprotein lyase: both the attachment of phycocyanobilin and the isomerization to phycoviolobilin are catalyzed by the proteins PecE and PecF encoded by the phycoerythrocyanin operon
Authors: Zhao KH, Deng MG, Zheng M, Zhou M, Parbel A, Storf M, Meyer M, Strohmann B, Scheer H.
Journal: FEBS Lett (2000): 9
Phycobiliprotein and fluorescence immunological assay
Authors: Wu P., undefined
Journal: Sheng Li Ke Xue Jin Zhan (2000): 82