logo
AAT Bioquest

Z-IETD-ProRed™ 620

Detection of Caspase 8 Activity in Jurkat cells with Z-IETD-ProRed™ 620. Jurkat cells were seeded on the same day at 200,000 cells/90 µL/well in a Costar black wall/clear bottom 96-well plate. The cells were treated with staurosporine at the final concentration of 1 µM for 5 hours while the untreated cells were used as control. The caspase 8 assay solution (100 µL/well) was added and incubated at room temperature for 1 hour. The fluorescence intensity was measured at Ex/Em = 540/620 nm with a FlexStation™ microplate reader (Molecular Devices).
Detection of Caspase 8 Activity in Jurkat cells with Z-IETD-ProRed™ 620. Jurkat cells were seeded on the same day at 200,000 cells/90 µL/well in a Costar black wall/clear bottom 96-well plate. The cells were treated with staurosporine at the final concentration of 1 µM for 5 hours while the untreated cells were used as control. The caspase 8 assay solution (100 µL/well) was added and incubated at room temperature for 1 hour. The fluorescence intensity was measured at Ex/Em = 540/620 nm with a FlexStation™ microplate reader (Molecular Devices).
Detection of Caspase 8 Activity in Jurkat cells with Z-IETD-ProRed™ 620. Jurkat cells were seeded on the same day at 200,000 cells/90 µL/well in a Costar black wall/clear bottom 96-well plate. The cells were treated with staurosporine at the final concentration of 1 µM for 5 hours while the untreated cells were used as control. The caspase 8 assay solution (100 µL/well) was added and incubated at room temperature for 1 hour. The fluorescence intensity was measured at Ex/Em = 540/620 nm with a FlexStation™ microplate reader (Molecular Devices).
Ordering information
Price
Catalog Number
Unit Size
Quantity
Add to cart
Additional ordering information
Telephone1-800-990-8053
Fax1-800-609-2943
Emailsales@aatbio.com
InternationalSee distributors
Bulk requestInquire
Custom sizeInquire
ShippingStandard overnight for United States, inquire for international
Request quotation
Physical properties
Molecular weight1565.59
SolventDMSO
Spectral properties
Excitation (nm)532
Emission (nm)619
Storage, safety and handling
H-phraseH303, H313, H333
Hazard symbolXN
Intended useResearch Use Only (RUO)
R-phraseR20, R21, R22
StorageFreeze (< -15 °C); Minimize light exposure
UNSPSC12352200

OverviewpdfSDSpdfProtocol


See also: Caspases
Molecular weight
1565.59
Excitation (nm)
532
Emission (nm)
619
ProRed™-derived protease substrates are colorless and non-fluorescent. Cleavage of blocking protease-cleavable peptide residue by caspases generates the strongly red fluorescent ProRed™ that can be monitored fluorimetrically at ~620 nm with excitation of ~530 nm. ProRed™-derived caspase substrates are the most sensitive red indicators for the fluorimetric detection of various caspase activities. This IETD-ProRed™ substrate is specific for detecting caspase 8.

Example protocol


AT A GLANCE

Important notes

It is important to store at <-15 °C and should be stored in cool, dark place.

It can be used within 12 months from the date of receipt. 

SAMPLE EXPERIMENTAL PROTOCOL

Following protocol only provides a guideline, and should be modified according to your specific needs.

General Solution Caspase Assays Using AMC, AFC, pNA, R110 and ProRed Substrates

  1. Prepare a 10 mM stock solution in DMSO.

  2. Prepare a 2X caspase substrate (50 µM) assay solution as the following: 50 µL substrate stock solution, 100 µL DTT (1M), 400 µL EDTA (100 mM), 10 mL Tris Buffer (20 mM), pH =7.4.

  3. Mix equal volume of the caspase standards or samples with 2X caspase substrate assay solution, and incubate the solutions at room temperature for at least 1 hour.

  4. Monitor the fluorescence using a fluorescence microplate reader, or absorbance using an absorbance microplate reader.

Cell Caspase Assays Using Cell-Permeable FMK Caspase Probes

  1. Prepare a 2-5 mM stock solution in DMSO.

  2. Treat cells as desired.

  3. Prepare a 2X permeable caspase substrate (20 µM) assay solution by diluting the DMSO stock solution (from Step 2.1) in Hanks with 20 mM Hepes buffer (HHBS).

  4. Mix equal volume of the treated cells with 2X caspase substrate assay solution (from Step 2.3), and incubate the cells in a 37°C, 5% CO2 incubator for at least1 hour.

  5. Wash the cells with HHBS for at least once.

  6. Monitor the fluorescence intensity by a flow cytometer, a fluorescence microscope or a fluorescence microplate reader.

Cell Caspase Assays Using Cell-Permeable FMK Caspase Probes (For #13470-13476 only)

  1. Prepare a 250X stock solution by adding 50 µL DMSO into the vial.

  2. Treat cells as desired.

  3. Add 250 X DMSO stock solution into the cell solution at a 1:250 ratio (such as 2 µL to 500 µL cells), and incubate the cells in a 37°C, 5% CO2 incubator for 1 hour.

  4. Wash the cells with HHBS for at least once.

  5. Monitor the fluorescence intensity by flow cytometer, fluorescence microscopy or fluorescent microplate reader.

Calculators


Common stock solution preparation

Table 1. Volume of DMSO needed to reconstitute specific mass of Z-IETD-ProRed™ 620 to given concentration. Note that volume is only for preparing stock solution. Refer to sample experimental protocol for appropriate experimental/physiological buffers.

0.1 mg0.5 mg1 mg5 mg10 mg
1 mM63.874 µL319.368 µL638.737 µL3.194 mL6.387 mL
5 mM12.775 µL63.874 µL127.747 µL638.737 µL1.277 mL
10 mM6.387 µL31.937 µL63.874 µL319.368 µL638.737 µL

Molarity calculator

Enter any two values (mass, volume, concentration) to calculate the third.

Mass (Calculate)Molecular weightVolume (Calculate)Concentration (Calculate)Moles
/=x=

Spectrum


Open in Advanced Spectrum Viewer
spectrum

Spectral properties

Excitation (nm)532
Emission (nm)619

Product Family


NameExcitation (nm)Emission (nm)
Z-DEVD-ProRed™ 620532619
Z-LEHD-ProRed™ 620532619

Images


Citations


View all 1 citations: Citation Explorer
Degenerin channel activation causes caspase-mediated protein degradation and mitochondrial dysfunction in adult C. elegans muscle
Authors: Gaffney, Christopher J and Shephard, Freya and Chu, Jeff and Baillie, David L and Rose, Ann and Constantin-Teodosiu, Dumitru and Greenhaff, Paul L and Szewczyk, Nathaniel J
Journal: Journal of Cachexia, Sarcopenia and Muscle (2015)

References


View all 101 references: Citation Explorer
Fisetin induces apoptosis in human cervical cancer HeLa cells through ERK1/2-mediated activation of caspase-8-/caspase-3-dependent pathway
Authors: Ying TH, Yang SF, Tsai SJ, Hsieh SC, Huang YC, Bau DT, Hsieh YH.
Journal: Arch Toxicol (2012): 263
Andrographolide induces apoptosis in B16F-10 melanoma cells by inhibiting NF-kappaB-mediated bcl-2 activation and modulating p53-induced caspase-3 gene expression
Authors: Pratheeshkumar P, Sheeja K, Kuttan G.
Journal: Immunopharmacol Immunotoxicol (2012): 143
ECRG4 is a negative regulator of caspase-8-mediated apoptosis in human T-leukemia cells
Authors: Matsuzaki J, Torigoe T, Hirohashi Y, Kamiguchi K, Tamura Y, Tsukahara T, Kubo T, Takahashi A, Nakazawa E, Saka E, Yasuda K, Takahashi S, Sato N.
Journal: Carcinogenesis (2012): 996
Proteasome inhibition can impair caspase-8 Activation upon sub-maximal Stimulation of apoptotic tumour necrosis factor-related apoptosis inducing ligand (TRAIL) signalling
Authors: Laussmann MA, Passante E, Hellwig CT, Tomiczek B, Flanagan L, Prehn JH, Huber HJ, Rehm M.
Journal: J Biol Chem. (2012)
Caspase-2 is an initiator caspase responsible for pore-forming toxin-mediated apoptosis
Authors: Imre G, Heering J, Takeda AN, Husmann M, Thiede B, Zu Heringdorf DM, Green DR, van der Goot FG, Sinha B, Dotsch V, Rajalingam K.
Journal: EMBO J. (2012)
Inhibitory effects of Scutellaria baicalensis extract on hepatic stellate cells through inducing G2/M cell cycle arrest and activating ERK-dependent apoptosis via Bax and caspase pathway
Authors: Pan TL, Wang PW, Leu YL, Wu TH, Wu TS.
Journal: J Ethnopharmacol (2012): 829
Berberine inhibits norepinephrine-induced apoptosis in neonatal rat cardiomyocytes via inhibiting ROS-TNF-alpha-caspase signaling pathway
Authors: Lv XX, Yu XH, Wang HD, Yan YX, Wang YP, Lu DX, Qi RB, Hu CF, Li HM.
Journal: Chin J Integr Med. (2012)
Imaging apoptosis with positron emission tomography: 'bench to bedside' development of the caspase-3/7 specific radiotracer [(18)F]ICMT-11
Authors: Nguyen QD, Challapalli A, Smith G, Fortt R, Aboagye EO.
Journal: Eur J Cancer (2012): 432
Musca domestica pupae lectin induces apoptosis in HepG2 cells through a NF-kappaB/p65-mediated caspase pathway
Authors: Nie J, Cao X, Zhou M, Zhang X, Zhang R, Niu L, Xia Y, Hou L, Wang C.
Journal: Bull Cancer (2012): 49
Caspase cleavage of viral proteins, another way for viruses to make the best of apoptosis
Authors: Richard A, Tulasne D.
Journal: Cell Death Dis (2012): e277