logo
AAT Bioquest

Cal-590™ AM

ATP-stimulated calcium response of endogenous P2Y receptor in CHO-K1 cells incubated with Cal-590® AM  or Rhod-2 AM under the same conditions. CHO-K1 cells were seeded overnight at 50,000 cells per 100 µL per well in a 96-well black wall/clear bottom Costar plate. 100 µL of 5 µg/mL Cal-590® AM or Rhod-2 AM with 2.5 mM probenecid was added into the cells, and the cells were incubated at 37 °C for 1 hour. ATP (50 µL/well) was added by FlexStation (Molecular Devices) to achieve the final indicated concentrations.
ATP-stimulated calcium response of endogenous P2Y receptor in CHO-K1 cells incubated with Cal-590® AM  or Rhod-2 AM under the same conditions. CHO-K1 cells were seeded overnight at 50,000 cells per 100 µL per well in a 96-well black wall/clear bottom Costar plate. 100 µL of 5 µg/mL Cal-590® AM or Rhod-2 AM with 2.5 mM probenecid was added into the cells, and the cells were incubated at 37 °C for 1 hour. ATP (50 µL/well) was added by FlexStation (Molecular Devices) to achieve the final indicated concentrations.
ATP-stimulated calcium response of endogenous P2Y receptor in CHO-K1 cells incubated with Cal-590® AM  or Rhod-2 AM under the same conditions. CHO-K1 cells were seeded overnight at 50,000 cells per 100 µL per well in a 96-well black wall/clear bottom Costar plate. 100 µL of 5 µg/mL Cal-590® AM or Rhod-2 AM with 2.5 mM probenecid was added into the cells, and the cells were incubated at 37 °C for 1 hour. ATP (50 µL/well) was added by FlexStation (Molecular Devices) to achieve the final indicated concentrations.
Staining of astrocytes with Cal-590 in the in vivo mouse cortex. (A) Two-photon fluorescence image (average of 1,200 consecutive frames) obtained in layer 2/3 of the visual cortex of an anesthetized mouse after bulk-loading with Cal-590 AM. The excitation wavelength was 1,050 nm. (B) Two-photon fluorescence image of the same optical section as in A after additional staining with sulforhodamine 101 (SR 101). For staining with SR 101, we used the protocol initially published by Nimmerjahn et al.. The excitation wavelength was 900 nm. The red arrows here and in A indicate two labeled astrocytes. Source: <b>Deep two-photon brain imaging with a red-shifted fluorometric Ca2+ indicator</b> by Tischbirek, C., Birkner, A., Jia, H., Sakmann, B. & Konnerth, A. <em>Proc. Natl. Acad. Sci.</em> USA 112, 11377–11382. July 2015
Ordering information
Price
Catalog Number
Unit Size
Quantity
Add to cart
Additional ordering information
Telephone1-800-990-8053
Fax1-800-609-2943
Emailsales@aatbio.com
InternationalSee distributors
Bulk requestInquire
Custom sizeInquire
ShippingStandard overnight for United States, inquire for international
Request quotation
Physical properties
Dissociation constant (Kd, nM)561
Molecular weight1266.81
SolventDMSO
Spectral properties
Extinction coefficient (cm -1 M -1)78000
Excitation (nm)574
Emission (nm)588
Quantum yield0.621
Storage, safety and handling
Certificate of OriginDownload PDF
H-phraseH303, H313, H333
Hazard symbolXN
Intended useResearch Use Only (RUO)
R-phraseR20, R21, R22
StorageFreeze (< -15 °C); Minimize light exposure
UNSPSC12352200
Related products
Cal-590™-Dextran Conjugate *MW 3,000*
Cal-590™-Dextran Conjugate *MW 10,000*
Cal-590™, sodium salt
Cal-590™, potassium salt
Cal-590L® Dextran Conjugate *MW 10,000*
Chemical Phosphorylation Reagent I (CPR I)
Cell Meter™ Mitochondrial Hydroxyl Radical Detection Kit *Red Fluorescence*
Cal Green™ 1, hexapotassium salt
Cal Green™ 1, AM [Equivalent to Calcium Green-1, AM]
Cal-630™, sodium salt
Cal-630™, potassium salt
Cal-630™-Dextran Conjugate *MW 3,000*
Cal-630™-Dextran Conjugate *MW 10,000*
Fluo-4 AM *Ultrapure Grade* *CAS 273221-67-3*
Fluo-4, Pentapotassium Salt
Cal Red™ R525/650 potassium salt
Cal Red™ R525/650 AM
Cal-520®-Dextran Conjugate *MW 3,000*
Cal-520®-Dextran Conjugate *MW 10,000*
Cal-520®-Biotin Conjugate
Cal-520®-Biocytin Conjugate
Cal-520® NHS Ester
Cal-520® maleimide
Fluo-3, AM *CAS 121714-22-5*
Fluo-3, AM *UltraPure grade* *CAS 121714-22-5*
Fluo-3, AM *Bulk package* *CAS 121714-22-5*
Fluo-3FF, AM *UltraPure grade* *Cell permeant*
Fluo-3, pentasodium salt
Fluo-3, pentapotassium salt
Fluo-3, pentaammonium salt
Fluo-3FF, pentapotassium salt
Fluo-8®, AM
Fluo-8®, sodium salt
Fluo-8®, potassium salt
Fluo-8H™, AM
Fluo-8H™, sodium salt
Fluo-8L™, AM
Fluo-8L™, sodium salt
Fluo-8L™, potassium salt
Fluo-8FF™, potassium salt
Fluo-8FF™, AM
Cal-520®, sodium salt
Cal-520®, potassium salt
Cal-520FF™, potassium salt
Screen Quest™ Fluo-8 Medium Removal Calcium Assay Kit *Optimized for Difficult Cell Lines*
Screen Quest™ Fluo-8 No Wash Calcium Assay Kit
Mag-Fluo-4 potassium salt
Mag-Fluo-4 AM
Fluo-2, potassium salt
Fluo-2, AM
Fluo-5F, AM *Cell permeant*
Fluo-5F, pentapotassium Salt *Cell impermeant*
Fluo-5N, AM *Cell permeant*
Fluo-5N, pentapotassium Salt *Cell impermeant*
Cal-520N™, potassium salt
Screen Quest™ Fluo-4 No Wash Calcium Assay Kit
Calbryte™ 520 AM
Calbryte™ 520, potassium salt
Calbryte™ 590, potassium salt
Calbryte™ 630 AM
Calbryte™ 630, potassium salt
Screen Quest™ Calbryte-520 Probenecid-Free and Wash-Free Calcium Assay Kit
Screen Quest™ Calbryte-590 Probenecid-Free and Wash-Free Calcium Assay Kit
Calbryte™-520L AM
Calbryte™-520L, potassium salt
Cal-500™, potassium salt
Cal-670™, potassium salt
Cal-670™-Dextran Conjugate *MW 3,000*
Cal-670™-Dextran Conjugate *MW 10,000*
Cal-770™, potassium salt
Cal-770™-Dextran Conjugate *MW 3,000*
Cal-770™-Dextran Conjugate *MW 10,000*
Calbryte™-520XL azide
Calbryte™-520XL, potassium salt
Calbryte™-520XL AM
Calbryte™-520XL-Dextran
Cal-520L®-Dextran Conjugate *MW 10,000*
RatioWorks™ Cal-520L®/Cy5-Dextran Conjugate *MW 10,000*
Cal-520L™ maleimide
RatioWorks™ Cal-520®/zFluor 647™ -Dextran Conjugate *MW 10,000*
RatioWorks™ Cal-590L®/Cy5-Dextran Conjugate *MW 10,000*
Cal-520® amine
Cal-520® azide
Cal-520® alkyne
Show More (74)

OverviewpdfSDSpdfProtocol


Molecular weight
1266.81
Dissociation constant (Kd, nM)
561
Extinction coefficient (cm -1 M -1)
78000
Excitation (nm)
574
Emission (nm)
588
Quantum yield
0.621
Calcium measurement is critical for numerous biological investigations. Fluorescent probes that show spectral responses upon binding calcium have enabled researchers to investigate changes in intracellular free calcium concentrations by using fluorescence microscopy, flow cytometry, fluorescence spectroscopy and fluorescence microplate readers. Rhod-2 is most commonly used among the red fluorescent calcium indicators. However, Rhod-2 AM is only moderately fluorescent in live cells upon esterase hydrolysis, and has very small cellular calcium responses. Cal-590™ has been developed to improve Rhod-2 cell loading and calcium response while maintaining the spectral wavelength of Rhod-2, making it compatible with TRITC/Cy3® filter set. In CHO and HEK cells Cal-590™ AM has cellular calcium response that is much more sensitive than Rhod-2 AM. The spectra of Cal-590 is well separated from those of FITC, Alexa Fluor® 488 and GFP, making it an ideal calcium probe for multiplexing intracellular assays with GFP cell lines or FITC/Alexa Fluor® 488 labeled antibodies.

Platform


Fluorescence microscope

ExcitationTRITC/Cy3
EmissionTRITC/Cy3
Recommended plateBlack wall/clear bottom

Fluorescence microplate reader

Excitation540
Emission590
Cutoff570
Recommended plateBlack wall/clear bottom
Instrument specification(s)Bottom read mode/Programmable liquid handling

Example protocol


PREPARATION OF STOCK SOLUTIONS

Unless otherwise noted, all unused stock solutions should be divided into single-use aliquots and stored at -20 °C after preparation. Avoid repeated freeze-thaw cycles

Cal-590™ AM Stock Solution
  1. Prepare a 2 to 5 mM stock solution of Cal-590™ AM in anhydrous DMSO.

    Note: When reconstituted in DMSO, Cal-590™ AM is a clear, colorless solution.

PREPARATION OF WORKING SOLUTION

Cal-590™ AM Working Solution
  1. On the day of the experiment, either dissolve Cal-590™ AM in DMSO or thaw an aliquot of the indicator stock solution to room temperature.

  2. Prepare a 2 to 20 µM Cal-590™ AM working solution in a buffer of your choice (e.g., Hanks and Hepes buffer) with 0.04% Pluronic® F-127. For most cell lines, Cal-590™ AM at a final concentration of 4-5 μM is recommended. The exact concentration of indicators required for cell loading must be determined empirically.

    Note: The nonionic detergent Pluronic® F-127 is sometimes used to increase the aqueous solubility of Cal-590™ AM. A variety of Pluronic® F-127 solutions can be purchased from AAT Bioquest.

    Note: If your cells contain organic anion-transporters, probenecid (1-2 mM) may be added to the dye working solution (final in well concentration will be 0.5-1 mM) to reduce leakage of the de-esterified indicators. A variety of ReadiUse™ Probenecid products, including water-soluble, sodium salt, and stabilized solutions, can be purchased from AAT Bioquest.

SAMPLE EXPERIMENTAL PROTOCOL

Following is our recommended protocol for loading AM esters into live cells. This protocol only provides a guideline and should be modified according to your specific needs.

  1. Prepare cells in growth medium overnight.
  2. On the next day, add 1X Cal-590™ AM working solution to your cell plate.

    Note: If your compound(s) interfere with the serum, replace the growth medium with fresh HHBS buffer before dye-loading.

  3. Incubate the dye-loaded plate in a cell incubator at 37 °C for 30 to 60 minutes.

    Note: Incubating the dye for longer than 2 hours can improve signal intensities in certain cell lines.

  4. Replace the dye working solution with HHBS or buffer of your choice (containing an anion transporter inhibitor, such as 1 mM probenecid, if applicable) to remove any excess probes.
  5. Add the stimulant as desired and simultaneously measure fluorescence using either a fluorescence microscope equipped with a TRITC/Cy3 filter set or a fluorescence plate reader containing a programmable liquid handling system such as an FDSS, FLIPR, or FlexStation, at Ex/Em = 540/590 nm cutoff 570 nm.

Calculators


Common stock solution preparation

Table 1. Volume of DMSO needed to reconstitute specific mass of Cal-590™ AM to given concentration. Note that volume is only for preparing stock solution. Refer to sample experimental protocol for appropriate experimental/physiological buffers.

0.1 mg0.5 mg1 mg5 mg10 mg
1 mM78.938 µL394.692 µL789.384 µL3.947 mL7.894 mL
5 mM15.788 µL78.938 µL157.877 µL789.384 µL1.579 mL
10 mM7.894 µL39.469 µL78.938 µL394.692 µL789.384 µL

Molarity calculator

Enter any two values (mass, volume, concentration) to calculate the third.

Mass (Calculate)Molecular weightVolume (Calculate)Concentration (Calculate)Moles
/=x=

Spectrum


Open in Advanced Spectrum Viewer
spectrum

Spectral properties

Extinction coefficient (cm -1 M -1)78000
Excitation (nm)574
Emission (nm)588
Quantum yield0.621

Product Family


NameExcitation (nm)Emission (nm)Quantum yield
Cal-630™ AM6096260.371
Cal-520®, AM4925150.751
Cal-520FF™, AM4925150.751
Cal-520N™, AM4925150.751
Calbryte™ 590 AM581593-
Cal-500™ AM3884820.481

Images


Citations


View all 69 citations: Citation Explorer
Role of Mitochondrial ROS for Calcium Alternans in Atrial Myocytes
Authors: Oropeza-Almaz{\'a}n, Yuriana and Blatter, Lothar A
Journal: Biomolecules (2024): 144
A METHOD FOR DETECTING SPATIOTEMPORAL PATTERNS OF CANCER BIOMARKERS-EVOKED ACTIVITY USING RADIAL BASIS FUNCTION NETWORK EXTRACTED TIME-DOMAIN FEATURES FROM CALCIUM IMAGING DATA
Authors: Shcherban, Igor V and Fedotova, Victoria S and Matukhno, Aleksey E and Shepelev, Igor E and Shcherban, Oxana G and Lysenko, Larisa V
Journal: Journal of Neuroscience Methods (2024): 110097
Multibeam continuous axial scanning two-photon microscopy for in vivo volumetric imaging in mouse brain
Authors: Ataka, Mitsutoshi and Otomo, Kohei and Enoki, Ryosuke and Ishii, Hirokazu and Tsutsumi, Motosuke and Kozawa, Yuichi and Sato, Shunichi and Nemoto, Tomomi
Journal: Biomedical Optics Express (2024): 1089--1101
ER and SOCE Ca2+ signals are not required for directed cell migration in human microglia
Authors: Granzotto, Alberto and McQuade, Amanda and Chadarevian, Jean Paul and Davtyan, Hayk and Sensi, Stefano L and Parker, Ian and Blurton-Jones, Mathew and Smith, Ian
Journal: bioRxiv (2024): 2024--01
The method for assessment of local permutations in the glomerular patterns of the rat olfactory bulb by aligning interindividual odor maps
Authors: Matukhno, Aleksey E and Petrushan, Mikhail V and Kiroy, Valery N and Arsenyev, Fedor V and Lysenko, Larisa V
Journal: Journal of Computational Neuroscience (2023): 1--12
An ON-type direction-selective ganglion cell in primate retina
Authors: Wang, Anna YM and Kulkarni, Manoj M and McLaughlin, Amanda J and Gayet, Jacqueline and Smith, Benjamin E and Hauptschein, Max and McHugh, Cyrus F and Yao, Yvette Y and Puthussery, Teresa
Journal: Nature (2023): 1--6
Annexe A: SARS-CoV-2 deregulates the vascular and immune functions of brain pericytes via Spike protein.
Authors: Khaddaj-Mallata, Rayan and Aldiba, Natija and Bernarda, Maxime and Paquettea, Anne-Sophie and Ferreirab, Aymeric and Lecordiera, Sarah and Saghatelyanb, Armen and Flamanda, Louis and ElAlia, Ayman
Journal: Analyse d'{\'e}v{\`e}nements neurobiologiques h{\'e}t{\'e}rog{\`e}nes {\`a} l'aide d'outils computationnels. (2023): 200
Differential CpG methylation at Nnat in the early establishment of beta cell heterogeneity
Authors: Yu, Vanessa and Yong, Fiona and Marta, Angellica and Khadayate, Sanjay and Osakwe, Adrien and Bhattacharya, Supriyo and Varghese, Sneha S and Chabosseau, Pauline and Tabibi, Sayed M and Chen, Keran and others,
Journal: bioRxiv (2023)
A genetically encoded sensor measures temporal oxytocin release from different neuronal compartments
Authors: Qian, Tongrui and Wang, Huan and Wang, Peng and Geng, Lan and Mei, Long and Osakada, Takuya and Wang, Lei and Tang, Yan and Kania, Alan and Grinevich, Valery and others,
Journal: Nature Biotechnology (2023): 1--14
Infiltrating CD8+ T cells exacerbate Alzheimer’s disease pathology in a 3D human neuroimmune axis model
Authors: Jorfi, Mehdi and Park, Joseph and Hall, Clare K and Lin, Chih-Chung Jerry and Chen, Meng and von Maydell, Djuna and Kruskop, Jane M and Kang, Byunghoon and Choi, Younjung and Prokopenko, Dmitry and others,
Journal: Nature Neuroscience (2023): 1--16