logo
AAT Bioquest

6-TAMRA alkyne

Product Image
Product Image
Gallery Image 1
Ordering information
Price
Catalog Number
Unit Size
Quantity
Add to cart
Additional ordering information
Telephone1-800-990-8053
Fax1-800-609-2943
Emailsales@aatbio.com
InternationalSee distributors
Bulk requestInquire
Custom sizeInquire
ShippingStandard overnight for United States, inquire for international
Request quotation
Physical properties
Molecular weight467.52
SolventDMSO
Spectral properties
Correction Factor (260 nm)0.32
Correction Factor (280 nm)0.178
Extinction coefficient (cm -1 M -1)90000
Excitation (nm)552
Emission (nm)578
Storage, safety and handling
H-phraseH303, H313, H333
Hazard symbolXN
Intended useResearch Use Only (RUO)
R-phraseR20, R21, R22
StorageFreeze (< -15 °C); Minimize light exposure
UNSPSC12171501

OverviewpdfSDSpdfProtocol


Molecular weight
467.52
Correction Factor (260 nm)
0.32
Correction Factor (280 nm)
0.178
Extinction coefficient (cm -1 M -1)
90000
Excitation (nm)
552
Emission (nm)
578
6-TAMRA alkyne is an excellent azide-reactive fluorescent reagent for labeling alkyne-containing biological molecules through the well known click chemistry. It has the spectral properties identical to those of TRITC conjugates, thus all the instrument settings of the TRITC conjugates would be applicable to the applications of 6-TAMRA alkyne conjugates.

Calculators


Common stock solution preparation

Table 1. Volume of DMSO needed to reconstitute specific mass of 6-TAMRA alkyne to given concentration. Note that volume is only for preparing stock solution. Refer to sample experimental protocol for appropriate experimental/physiological buffers.

0.1 mg0.5 mg1 mg5 mg10 mg
1 mM213.895 µL1.069 mL2.139 mL10.695 mL21.389 mL
5 mM42.779 µL213.895 µL427.789 µL2.139 mL4.278 mL
10 mM21.389 µL106.947 µL213.895 µL1.069 mL2.139 mL

Molarity calculator

Enter any two values (mass, volume, concentration) to calculate the third.

Mass (Calculate)Molecular weightVolume (Calculate)Concentration (Calculate)Moles
/=x=

Spectrum


Open in Advanced Spectrum Viewer
spectrum

Spectral properties

Correction Factor (260 nm)0.32
Correction Factor (280 nm)0.178
Extinction coefficient (cm -1 M -1)90000
Excitation (nm)552
Emission (nm)578

Product Family


NameExcitation (nm)Emission (nm)Extinction coefficient (cm -1 M -1)Correction Factor (260 nm)Correction Factor (280 nm)
6-FAM Alkyne493517830000.320.178
6-HEX alkyne53355973000-0.15
6-TET alkyne52154273000-0.13
6-JOE alkyne520545750001--
6-TAMRA ethylenediamine552578900000.320.178
5(6)-TAMRA [5(6)-Carboxytetramethylrhodamine] *CAS 98181-63-6*552578900000.320.178
6-TAMRA, SE [6-Carboxytetramethylrhodamine, succinimidyl ester] *CAS#: 150810-69-8*552578900000.320.178
6-TAMRA Maleimide [Tetramethylrhodamine-6-maleimide] *CAS 174568-68-4*552578900000.320.178
5-TAMRA alkyne552578900000.320.178
6-ROX alkyne57860482000-0.168
6-TAMRA CPG *1000 Å*552578900000.320.178
6-NED alkyne545567740001--
6-VIC Alkyne526543---
Show More (4)

Images


Citations


View all 3 citations: Citation Explorer
Design and Characterization of Two Bifunctional Cryptophane A-Based Host Molecules for Xenon Magnetic Resonance Imaging Applications
Authors: Rossella, Federica and Rose, Honor May and Witte, Christopher and Jayapaul, Jabadurai and Schr&ouml;der, Leif
Journal: ChemPlusChem (2014): 1463--1471
Human erythrocytes as drug carriers: loading efficiency and side effects of hypotonic dialysis, chlorpromazine treatment and fusion with liposomes
Authors: Favretto, ME and Cluitmans, JCA and Bosman, GJCGM and Brock, R
Journal: Journal of Controlled Release (2013): 343--351
Advances in Quantitative FRET-Based Methods for Studying Nucleic Acids
Authors: Preus, S&oslash;ren and Wilhelmsson, L Marcus
Journal: ChemBioChem (2012): 1990--2001

References


View all 96 references: Citation Explorer
Optical detection of DNA hybridization based on fluorescence quenching of tagged oligonucleotide probes by gold nanoparticles
Authors: Wu ZS, Jiang JH, Fu L, Shen GL, Yu RQ.
Journal: Anal Biochem (2006): 22
Masking oligonucleotides improve sensitivity of mutation detection based on guanine quenching
Authors: Maruyama T, Shinohara T, Hosogi T, Ichinose H, Kamiya N, Goto M.
Journal: Anal Biochem (2006): 8
A fluorescence polarization assay for screening inhibitors against the ribonuclease H activity of HIV-1 reverse transcriptase
Authors: Nakayama GR, Bingham P, Tan D, Maegley KA.
Journal: Anal Biochem (2006): 260
High efficiency micellar electrokinetic chromatography of hydrophobic analytes on poly(dimethylsiloxane) microchips
Authors: Roman GT, McDaniel K, Culbertson CT.
Journal: Analyst (2006): 194
Metal-enhanced fluorescence-based RNA sensing
Authors: Aslan K, Huang J, Wilson GM, Geddes CD.
Journal: J Am Chem Soc (2006): 4206
Fluorescence anisotropy and FRET studies of G-quadruplex formation in presence of different cations
Authors: Juskowiak B, Galezowska E, Zawadzka A, Gluszynska A, Takenaka S.
Journal: Spectrochim Acta A Mol Biomol Spectrosc (2006): 835
Electrostatic-gated transport in chemically modified glass nanopore electrodes
Authors: Wang G, Zhang B, Wayment JR, Harris JM, White HS.
Journal: J Am Chem Soc (2006): 7679
A targeted protease substrate for a quantitative determination of protease activities in the endolysosomal pathway
Authors: Fischer R, Bachle D, Fotin-Mleczek M, Jung G, Kalbacher H, Brock R.
Journal: Chembiochem (2006): 1428
G Quadruplex-Based FRET Probes with the Thrombin-Binding Aptamer (TBA) Sequence Designed for the Efficient Fluorometric Detection of the Potassium Ion
Authors: Nagatoishi S, Nojima T, Galezowska E, Juskowiak B, Takenaka S.
Journal: Chembiochem (2006): 1730
Fluorescence properties of fluorescein, tetramethylrhodamine and Texas Red linked to a DNA aptamer
Authors: Unruh JR, Gokulrangan G, Wilson GS, Johnson CK.
Journal: Photochem Photobiol (2005): 682