logo
AAT Bioquest

2-Aminoethoxypropargyl ddATP

Product Image
Product Image
Gallery Image 1
Ordering information
Price
Catalog Number
Unit Size
Quantity
Add to cart
Additional ordering information
Telephone1-800-990-8053
Fax1-800-609-2943
Emailsales@aatbio.com
InternationalSee distributors
Bulk requestInquire
Custom sizeInquire
ShippingStandard overnight for United States, inquire for international
Request quotation
Physical properties
Molecular weight659.24
SolventDMF
Storage, safety and handling
H-phraseH303, H313, H333
Hazard symbolXN
Intended useResearch Use Only (RUO)
R-phraseR20, R21, R22
StorageFreeze (< -15 °C); Minimize light exposure
UNSPSC12171501

OverviewpdfSDSpdfProtocol


Molecular weight
659.24
Sanger method is one of the most reliable and earliest DNA sequencing methods. DNA is synthesized from four deoxynucleotide triphosphates (dNTPs). Each new nucleotide is added to the 3′ -OH group of the last dNTP added. Dideoxythymidine triphosphates (ddTTPs) can be added to the growing DNA strand but when it is, chain elongation stops because there is no 3′ -OH for the next nucleotide to be attached to. The DNA to be sequenced is prepared as a single strand. This template DNA is supplied with a mixture of dATP, dGTP, dCTP and dTTP in ample quantities. A mixture of all four dideoxynucleotides (ddATP, ddGTP, ddCTP and ddTTP), each present in limiting quantities and each labeled with a "tag" that fluoresces a different color, are added. Because all four normal nucleotides are present, chain elongation proceeds normally until, by chance, DNA polymerase inserts a ddNTP (instead of the normal dNTPs). If the ratio of normal nucleotide to the dideoxy versions is high enough, some DNA strands will succeed in adding several hundred nucleotides before insertion of the ddNTPs halts the process. At the end of the incubation period, the fragments are separated by length from longest to shortest. The resolution is so good that a difference of one nucleotide is enough to separate that strand from the next shorter and next longer strand. Each of the four ddNTPs fluoresces a different color when illuminated by a laser beam and an automatic scanner provides a printout of the sequence. These ddATP, ddGTP, ddCTP and ddTTP amine derivatives are the essential building blocks for developing Sanger sequencing reagents.

Calculators


Common stock solution preparation

Table 1. Volume of DMF needed to reconstitute specific mass of 2-Aminoethoxypropargyl ddATP to given concentration. Note that volume is only for preparing stock solution. Refer to sample experimental protocol for appropriate experimental/physiological buffers.

0.1 mg0.5 mg1 mg5 mg10 mg
1 mM151.69 µL758.449 µL1.517 mL7.584 mL15.169 mL
5 mM30.338 µL151.69 µL303.38 µL1.517 mL3.034 mL
10 mM15.169 µL75.845 µL151.69 µL758.449 µL1.517 mL

Molarity calculator

Enter any two values (mass, volume, concentration) to calculate the third.

Mass (Calculate)Molecular weightVolume (Calculate)Concentration (Calculate)Moles
/=x=

Images


Citations


View all 27 citations: Citation Explorer
Polyadenylated sequencing primers enable complete readability of PCR amplicons analyzed by dideoxynucleotide sequencing
Authors: Beranek, M., Drastikova, M., Petera, J.
Journal: Acta Medica (Hradec Kralove) (2012): 160-4
UV-induced bond modifications in thymine and thymine dideoxynucleotide: structural elucidation of isomers by differential mobility mass spectrometry
Authors: St-Jacques, A., Anichina, J., Schneider, B. B., Covey, T. R., Bohme, D. K.
Journal: Anal Chem (2010): 6163-7
Analysis of processivity of mungbean dideoxynucleotide-sensitive DNA polymerase and detection of the activity and expression of the enzyme in the meristematic and meiotic tissues and following DNA damaging agent
Authors: Roy, S., Choudhury, S. R., Sengupta, D. N.
Journal: Arch Biochem Biophys (2008): 55-65
A dideoxynucleotide-sensitive DNA polymerase activity characterized from endoreduplicating cells of mungbean (Vigna radiata L.) during ontogeny of cotyledons
Authors: Roy, S., Sarkar, S. N., Singh, S. K., Sengupta, D. N.
Journal: FEBS J (2007): 2005-23
Mechanism-based suppression of dideoxynucleotide resistance by K65R human immunodeficiency virus reverse transcriptase using an alpha-boranophosphate nucleoside analogue
Authors: Selmi, B., Boretto, J., Sarfati, S. R., Guerreiro, C., Canard, B.
Journal: J Biol Chem (2001): 48466-72
Synthesis of the first ferrocene-labeled dideoxynucleotide and its use for 3&apos;-redox end-labeling of 5&apos;-modified single-stranded oligonucleotides
Authors: Anne, A., Blanc, B., Moiroux, J.
Journal: Bioconjug Chem (2001): 396-405
Improving dideoxynucleotide-triphosphate utilisation by the hyper-thermophilic DNA polymerase from the archaeon Pyrococcus furiosus
Authors: Evans, S. J., Fogg, M. J., Mamone, A., Davis, M., Pearl, L. H., Connolly, B. A.
Journal: Nucleic Acids Res (2000): 1059-66
Structure-based design of Taq DNA polymerases with improved properties of dideoxynucleotide incorporation
Authors: Li, Y., Mitaxov, V., Waksman, G.
Journal: Proc Natl Acad Sci U S A (1999): 9491-6
Characterization of the native and recombinant catalytic subunit of human DNA polymerase gamma: identification of residues critical for exonuclease activity and dideoxynucleotide sensitivity
Authors: Longley, M. J., Ropp, P. A., Lim, S. E., Copel and , W. C.
Journal: Biochemistry (1998): 10529-39
Comparative performance of high-density oligonucleotide sequencing and dideoxynucleotide sequencing of HIV type 1 pol from clinical samples
Authors: Gunthard, H. F., Wong, J. K., Ignacio, C. C., Havlir, D. V., Richman, D. D.
Journal: AIDS Res Hum Retroviruses (1998): 869-76