logo
AAT Bioquest

Calbryte™ 590 AM

An ATP dose-response was measured in CHO-K1 cells with Calbryte™ 590 AM. CHO-K1 cells were seeded overnight at 50,000 cells/100 µL/well in a 96-well black wall/clear bottom costar plate. 100 µL of 10 µg/ml Calbryte™ 590 AM in HH Buffer with probenecid was added and incubated for 60 min at 37°C. Dye loading solution was then removed and replaced with 200 µL HH Buffer/well. ATP (50 µL/well) was added by FlexStation 3 to achieve the final indicated concentrations.
An ATP dose-response was measured in CHO-K1 cells with Calbryte™ 590 AM. CHO-K1 cells were seeded overnight at 50,000 cells/100 µL/well in a 96-well black wall/clear bottom costar plate. 100 µL of 10 µg/ml Calbryte™ 590 AM in HH Buffer with probenecid was added and incubated for 60 min at 37°C. Dye loading solution was then removed and replaced with 200 µL HH Buffer/well. ATP (50 µL/well) was added by FlexStation 3 to achieve the final indicated concentrations.
An ATP dose-response was measured in CHO-K1 cells with Calbryte™ 590 AM. CHO-K1 cells were seeded overnight at 50,000 cells/100 µL/well in a 96-well black wall/clear bottom costar plate. 100 µL of 10 µg/ml Calbryte™ 590 AM in HH Buffer with probenecid was added and incubated for 60 min at 37°C. Dye loading solution was then removed and replaced with 200 µL HH Buffer/well. ATP (50 µL/well) was added by FlexStation 3 to achieve the final indicated concentrations.
Ordering information
Price
Catalog Number
AvailabilityIn stock
Unit Size
Quantity
Add to cart
Additional ordering information
Telephone1-800-990-8053
Fax1-800-609-2943
Emailsales@aatbio.com
InternationalSee distributors
Bulk requestInquire
Custom sizeInquire
ShippingStandard overnight for United States, inquire for international
Request quotation
Physical properties
Dissociation constant (Kd, nM)1400
Molecular weight1218.77
SolventDMSO
Spectral properties
Excitation (nm)581
Emission (nm)593
Storage, safety and handling
Certificate of OriginDownload PDF
H-phraseH303, H313, H333
Hazard symbolXN
Intended useResearch Use Only (RUO)
R-phraseR20, R21, R22
StorageFreeze (< -15 °C); Minimize light exposure
UNSPSC12352200
Related products
Calbryte™ 520, potassium salt
Calbryte™ 590, potassium salt
Calbryte™ 630, potassium salt
Calbryte™-520L, potassium salt
Calbryte™-520XL azide
Calbryte™-520XL, potassium salt
Calbryte™-520XL-Dextran
Chemical Phosphorylation Reagent I (CPR I)
Cell Meter™ Mitochondrial Hydroxyl Radical Detection Kit *Red Fluorescence*
Cal Green™ 1, hexapotassium salt
Cal Green™ 1, AM [Equivalent to Calcium Green-1, AM]
Cal-590™-Dextran Conjugate *MW 3,000*
Cal-590™-Dextran Conjugate *MW 10,000*
Cal-590™, sodium salt
Cal-590™, potassium salt
Cal-630™ AM
Cal-630™, sodium salt
Cal-630™, potassium salt
Cal-630™-Dextran Conjugate *MW 3,000*
Cal-630™-Dextran Conjugate *MW 10,000*
Fluo-4 AM *Ultrapure Grade* *CAS 273221-67-3*
Fluo-4, Pentapotassium Salt
Cal Red™ R525/650 potassium salt
Cal Red™ R525/650 AM
Cal-520®-Dextran Conjugate *MW 3,000*
Cal-520®-Dextran Conjugate *MW 10,000*
Cal-520®-Biotin Conjugate
Cal-520®-Biocytin Conjugate
Cal-520® NHS Ester
Cal-520® maleimide
Fluo-3, AM *CAS 121714-22-5*
Fluo-3, AM *UltraPure grade* *CAS 121714-22-5*
Fluo-3, AM *Bulk package* *CAS 121714-22-5*
Fluo-3FF, AM *UltraPure grade* *Cell permeant*
Fluo-3, pentasodium salt
Fluo-3, pentapotassium salt
Fluo-3, pentaammonium salt
Fluo-3FF, pentapotassium salt
Fluo-8®, AM
Fluo-8®, sodium salt
Fluo-8®, potassium salt
Fluo-8H™, AM
Fluo-8H™, sodium salt
Fluo-8L™, AM
Fluo-8L™, sodium salt
Fluo-8L™, potassium salt
Fluo-8FF™, potassium salt
Fluo-8FF™, AM
Cal-520®, AM
Cal-520®, sodium salt
Cal-520®, potassium salt
Cal-520FF™, AM
Cal-520FF™, potassium salt
Screen Quest™ Fluo-8 Medium Removal Calcium Assay Kit *Optimized for Difficult Cell Lines*
Screen Quest™ Fluo-8 No Wash Calcium Assay Kit
Mag-Fluo-4 potassium salt
Mag-Fluo-4 AM
Fluo-2, potassium salt
Fluo-2, AM
Fluo-5F, AM *Cell permeant*
Fluo-5F, pentapotassium Salt *Cell impermeant*
Fluo-5N, AM *Cell permeant*
Fluo-5N, pentapotassium Salt *Cell impermeant*
Cal-520N™, AM
Cal-520N™, potassium salt
Screen Quest™ Fluo-4 No Wash Calcium Assay Kit
Screen Quest™ Calbryte-520 Probenecid-Free and Wash-Free Calcium Assay Kit
Screen Quest™ Calbryte-590 Probenecid-Free and Wash-Free Calcium Assay Kit
Cal-500™, potassium salt
Cal-500™ AM
Cal-670™, potassium salt
Cal-670™-Dextran Conjugate *MW 3,000*
Cal-670™-Dextran Conjugate *MW 10,000*
Cal-770™, potassium salt
Cal-770™-Dextran Conjugate *MW 3,000*
Cal-770™-Dextran Conjugate *MW 10,000*
Cal-520L®-Dextran Conjugate *MW 10,000*
RatioWorks™ Cal-520L®/Cy5-Dextran Conjugate *MW 10,000*
Cal-520L™ maleimide
RatioWorks™ Cal-520®/zFluor 647™ -Dextran Conjugate *MW 10,000*
Cal-590L® Dextran Conjugate *MW 10,000*
RatioWorks™ Cal-590L®/Cy5-Dextran Conjugate *MW 10,000*
Cal-520® amine
Cal-520® azide
Cal-520® alkyne
Show More (75)

OverviewpdfSDSpdfProtocol


Molecular weight
1218.77
Dissociation constant (Kd, nM)
1400
Excitation (nm)
581
Emission (nm)
593
The intracellular calcium flux assay is a widely used method in monitoring signal transduction pathways and high throughput screening of G protein"coupled receptors (GPCRs) and calcium channel targets. Followed by Rhod-2 being introduced in 1989, Rhod-4 and Cal-590 were later developed with improved signal/background ratio, and they became the widely used red fluorescent Ca2+ indicators for confocal microscopy, flow cytometry and high throughput screening applications. In CHO and HEK cells Rhod-4 and Cal-590 have cellular calcium response that are 10 times more sensitive than Rhod-2 AM. However, Cal-590 and Rhod-4 are still less sensitive to calcium in cells than the corresponding green fluorescent calcium indicators (e.g., Fluo-8 and Cal-520). Calbryte™ 590 is a new generation of red fluorescent indicators for the measurement of intracellular calcium. Its greatly improved signal/background ratio and intracellular retention properties make Calbryte™ 590 AM the most robust red fluorescent indicator for evaluating GPCR and calcium channel targets as well as for screening their agonists and antagonists in live cells. Like other dye AM cell loading, Calbryte™ 590 AM ester is non-fluorescent and once gets inside the cell, it is hydrolyzed by intracellular esterase and gets activated. The activated indicator is a polar molecule that is no longer capable of freely diffusing through cell membrane, essentially trapped inside cells.

Platform


Fluorescence microscope

ExcitationTRITC/Cy3
EmissionTRITC/Cy3
Recommended plateBlack wall/clear bottom

Fluorescence microplate reader

Excitation540
Emission590
Cutoff570
Recommended plateBlack wall/clear bottom
Instrument specification(s)Bottom read mode/Programmable liquid handling

Example protocol


PREPARATION OF STOCK SOLUTIONS

Unless otherwise noted, all unused stock solutions should be divided into single-use aliquots and stored at -20 °C after preparation. Avoid repeated freeze-thaw cycles

Calbryte™ 590 AM Stock Solution
  1. Prepare a 2 to 5 mM stock solution of Calbryte™ 590 AM in anhydrous DMSO.

    Note: When reconstituted in DMSO, Calbryte™ 590 AM is a clear, colorless solution.

PREPARATION OF WORKING SOLUTION

Calbryte™ 590 AM Working Solution
  1. On the day of the experiment, either dissolve Calbryte™ 590 AM in DMSO or thaw an aliquot of the indicator stock solution to room temperature.

  2. Prepare a 2 to 20 µM Calbryte™ 590 AM working solution in a buffer of your choice (e.g., Hanks and Hepes buffer) with 0.04% Pluronic® F-127. For most cell lines, Calbryte™ 590 AM at a final concentration of 4-5 μM is recommended. The exact concentration of indicators required for cell loading must be determined empirically.

    Note: The nonionic detergent Pluronic® F-127 is sometimes used to increase the aqueous solubility of Calbryte™ 590 AM. A variety of Pluronic® F-127 solutions can be purchased from AAT Bioquest.

    Note: If your cells contain organic anion-transporters, probenecid (1-2 mM) may be added to the dye working solution (final in well concentration will be 0.5-1 mM) to reduce leakage of the de-esterified indicators. A variety of ReadiUse™ Probenecid products, including water-soluble, sodium salt, and stabilized solutions, can be purchased from AAT Bioquest.

SAMPLE EXPERIMENTAL PROTOCOL

Following is our recommended protocol for loading AM esters into live cells. This protocol only provides a guideline and should be modified according to your specific needs.

  1. Prepare cells in growth medium overnight.
  2. On the next day, add 1X Calbryte™ 590 AM working solution to your cell plate.

    Note: If your compound(s) interfere with the serum, replace the growth medium with fresh HHBS buffer before dye-loading.

  3. Incubate the dye-loaded plate in a cell incubator at 37 °C for 30 to 60 minutes.

    Note: Incubating the dye for longer than 1 hour can improve signal intensities in certain cell lines.

  4. Replace the dye working solution with HHBS or buffer of your choice (containing an anion transporter inhibitor, such as 1 mM probenecid, if applicable) to remove any excess probes.
  5. Add the stimulant as desired and simultaneously measure fluorescence using either a fluorescence microscope equipped with a TRITC/Cy3 filter set or a fluorescence plate reader containing a programmable liquid handling system such as an FDSS, FLIPR, or FlexStation, at Ex/Em = 540/590 nm cutoff 570 nm.

Calculators


Common stock solution preparation

Table 1. Volume of DMSO needed to reconstitute specific mass of Calbryte™ 590 AM to given concentration. Note that volume is only for preparing stock solution. Refer to sample experimental protocol for appropriate experimental/physiological buffers.

0.1 mg0.5 mg1 mg5 mg10 mg
1 mM82.05 µL410.25 µL820.499 µL4.102 mL8.205 mL
5 mM16.41 µL82.05 µL164.1 µL820.499 µL1.641 mL
10 mM8.205 µL41.025 µL82.05 µL410.25 µL820.499 µL

Molarity calculator

Enter any two values (mass, volume, concentration) to calculate the third.

Mass (Calculate)Molecular weightVolume (Calculate)Concentration (Calculate)Moles
/=x=

Spectrum


Open in Advanced Spectrum Viewer
spectrum

Spectral properties

Excitation (nm)581
Emission (nm)593

Product Family


NameExcitation (nm)Emission (nm)Quantum yield
Calbryte™ 520 AM4935150.751
Calbryte™ 630 AM607624-
Calbryte™-520L AM4935150.751
Calbryte™-520XL AM4935150.751
Cal-590™ AM5745880.621

Images


Citations


View all 46 citations: Citation Explorer
Defined co-cultures of glutamatergic and GABAergic neurons with a mutation in DISC1 reveal aberrant phenotypes in GABAergic neurons
Authors: Heider, Johanna and Stahl, Aaron and Sperlich, Denise and Hartmann, Sophia-Marie and Vogel, Sabrina and Breitmeyer, Ricarda and Templin, Markus and Volkmer, Hansj{\"u}rgen
Journal: BMC Neuroscience (2024): 1--20
Mitochondria-ER Contact Sites expand during mitosis
Authors: Yu, Fang and Courjaret, Raphael and Assaf, Lama and Elmi, Asha and Hammad, Ayat and Fisher, Melanie and Terasaki, Mark and Machaca, Khaled
Journal: iScience (2024)
Dexamethasone upregulates macrophage PIEZO1 via SGK1, suppressing inflammation and increasing ROS and apoptosis
Authors: Liu, Hailin and Zhou, Lian and Wang, Xifeng and Zheng, Qingcui and Zhan, Fenfang and Zhou, Lanqian and Dong, Yao and Xiong, Yanhong and Yi, Pengcheng and Xu, Guohai and others,
Journal: Biochemical Pharmacology (2024): 116050
Chronic KATP inhibition in vivo results in decreased Ca2+ sensitivity of insulin secretion
Authors: York, Nathaniel W and Patel, Sumit and Yan, Zihan and Tate, Abbie L and Frazier, Courtney and Remedi, Maria S and Nichols, Colin G
Journal: Biophysical Journal (2024): 263a
Lidocaine induces apoptosis in head and neck squamous cell carcinoma through activation of bitter taste receptor T2R14
Authors: Miller, Zoey A and Mueller, Arielle and Kim, TaeBeom and Jolivert, Jennifer F and Ma, Ray Z and Muthuswami, Sahil and Park, April and McMahon, Derek B and Nead, Kevin T and Carey, Ryan M and others,
Journal: Cell Reports (2023)
Modelling viral encephalitis caused by herpes simplex virus 1 infection in cerebral organoids
Authors: Rybak-Wolf, Agnieszka and Wyler, Emanuel and Pentimalli, Tancredi Massimo and Legnini, Ivano and Oliveras Martinez, Anna and Gla{\v{z}}ar, Petar and Loewa, Anna and Kim, Seung Joon and Kaufer, Benedikt B and Woehler, Andrew and others,
Journal: Nature Microbiology (2023): 1--15
Sex Differences in Mouse Cardiac Electrophysiology Revealed by Simultaneous Imaging of Excitation-Contraction Coupling
Authors: Emerson, James I and Ariel, Pablo and Shi, Wei and Conlon, Frank L
Journal: Journal of Cardiovascular Development and Disease (2023): 479
Interaction of Teleost Fish TRPV4 with DEAD Box RNA Helicase 1 Regulates Iridovirus Replication
Authors: Luo, Zhiyong and Zhan, Zhipeng and Qin, Xiaowei and Pan, Weiqiang and Liang, Mincong and Li, Chuanrui and Weng, Shaoping and He, Jianguo and Guo, Changjun
Journal: Journal of Virology (2023): e00495--23
Dissociation of inositol 1, 4, 5-trisphosphate from IP3 receptors contributes to termination of Ca2+ puffs
Authors: Smith, Holly A and Taylor, Colin W
Journal: Journal of Biological Chemistry (2023): 102871

References


View all 53 references: Citation Explorer
A flow cytometric comparison of Indo-1 to fluo-3 and Fura Red excited with low power lasers for detecting Ca(2+) flux
Authors: Bailey S, Macardle PJ.
Journal: J Immunol Methods (2006): 220
Functional fluo-3/AM assay on P-glycoprotein transport activity in L1210/VCR cells by confocal microscopy
Authors: Orlicky J, Sulova Z, Dovinova I, Fiala R, Zahradnikova A, Jr., Breier A.
Journal: Gen Physiol Biophys (2004): 357
Comparison of human recombinant adenosine A2B receptor function assessed by Fluo-3-AM fluorometry and microphysiometry
Authors: Patel H, Porter RH, Palmer AM, Croucher MJ.
Journal: Br J Pharmacol (2003): 671
Measurement of the dissociation constant of Fluo-3 for Ca2+ in isolated rabbit cardiomyocytes using Ca2+ wave characteristics
Authors: Loughrey CM, MacEachern KE, Cooper J, Smith GL.
Journal: Cell Calcium (2003): 1
A sensitive method for the detection of foot and mouth disease virus by in situ hybridisation using biotin-labelled oligodeoxynucleotides and tyramide signal amplification
Authors: Zhang Z, Kitching P.
Journal: J Virol Methods (2000): 187
Kinetics of onset of mouse sperm acrosome reaction induced by solubilized zona pellucida: fluorimetric determination of loss of pH gradient between acrosomal lumen and medium monitored by dapoxyl (2-aminoethyl) sulfonamide and of intracellular Ca(2+) chang
Authors: Rockwell PL, Storey BT.
Journal: Mol Reprod Dev (2000): 335
MRP2, a human conjugate export pump, is present and transports fluo 3 into apical vacuoles of Hep G2 cells
Authors: Cantz T, Nies AT, Brom M, Hofmann AF, Keppler D.
Journal: Am J Physiol Gastrointest Liver Physiol (2000): G522
Use of co-loaded Fluo-3 and Fura Red fluorescent indicators for studying the cytosolic Ca(2+)concentrations distribution in living plant tissue
Authors: Walczysko P, Wagner E, Albrechtova JT.
Journal: Cell Calcium (2000): 23
[Ca2+]i following extrasystoles in guinea-pig trabeculae microinjected with fluo-3 - a comparison with frog skeletal muscle fibres
Authors: Wohlfart B., undefined
Journal: Acta Physiol Scand (2000): 1
Determination of the intracellular dissociation constant, K(D), of the fluo-3. Ca(2+) complex in mouse sperm for use in estimating intracellular Ca(2+) concentrations
Authors: Rockwell PL, Storey BT.
Journal: Mol Reprod Dev (1999): 418