logo
AAT Bioquest

Cal-520® NHS Ester

Product Image
Product Image
Gallery Image 1
Ordering information
Price
Catalog Number
Unit Size
Quantity
Add to cart
Additional ordering information
Telephone1-800-990-8053
Fax1-800-609-2943
Emailsales@aatbio.com
InternationalSee distributors
Bulk requestInquire
Custom sizeInquire
ShippingStandard overnight for United States, inquire for international
Request quotation
Physical properties
Molecular weight1048.9
SolventDMSO
Spectral properties
Excitation (nm)492
Emission (nm)515
Quantum yield0.751
Storage, safety and handling
H-phraseH303, H313, H333
Hazard symbolXN
Intended useResearch Use Only (RUO)
R-phraseR20, R21, R22
StorageFreeze (< -15 °C); Minimize light exposure
UNSPSC12352200
Related products
Cal-520®-Dextran Conjugate *MW 3,000*
Cal-520®-Dextran Conjugate *MW 10,000*
Cal-520®-Biotin Conjugate
Cal-520®-Biocytin Conjugate
Cal-520® maleimide
Cal-520®, AM
Cal-520®, sodium salt
Cal-520®, potassium salt
Cal-520FF™, AM
Cal-520FF™, potassium salt
Cal-520N™, AM
Cal-520N™, potassium salt
Cal-520L®-Dextran Conjugate *MW 10,000*
Cal-520L™ maleimide
Cal-520® amine
Cal-520® azide
Cal-520® alkyne
Chemical Phosphorylation Reagent I (CPR I)
Cell Meter™ Mitochondrial Hydroxyl Radical Detection Kit *Red Fluorescence*
Cal Green™ 1, hexapotassium salt
Cal Green™ 1, AM [Equivalent to Calcium Green-1, AM]
Cal-590™-Dextran Conjugate *MW 3,000*
Cal-590™-Dextran Conjugate *MW 10,000*
Cal-590™ AM
Cal-590™, sodium salt
Cal-590™, potassium salt
Cal-630™ AM
Cal-630™, sodium salt
Cal-630™, potassium salt
Cal-630™-Dextran Conjugate *MW 3,000*
Cal-630™-Dextran Conjugate *MW 10,000*
Fluo-4 AM *Ultrapure Grade* *CAS 273221-67-3*
Fluo-4, Pentapotassium Salt
Cal Red™ R525/650 potassium salt
Cal Red™ R525/650 AM
Fluo-3, AM *CAS 121714-22-5*
Fluo-3, AM *UltraPure grade* *CAS 121714-22-5*
Fluo-3, AM *Bulk package* *CAS 121714-22-5*
Fluo-3FF, AM *UltraPure grade* *Cell permeant*
Fluo-3, pentasodium salt
Fluo-3, pentapotassium salt
Fluo-3, pentaammonium salt
Fluo-3FF, pentapotassium salt
Fluo-8®, AM
Fluo-8®, sodium salt
Fluo-8®, potassium salt
Fluo-8H™, AM
Fluo-8H™, sodium salt
Fluo-8L™, AM
Fluo-8L™, sodium salt
Fluo-8L™, potassium salt
Fluo-8FF™, potassium salt
Fluo-8FF™, AM
Screen Quest™ Fluo-8 Medium Removal Calcium Assay Kit *Optimized for Difficult Cell Lines*
Screen Quest™ Fluo-8 No Wash Calcium Assay Kit
Mag-Fluo-4 potassium salt
Mag-Fluo-4 AM
Fluo-2, potassium salt
Fluo-2, AM
Fluo-5F, AM *Cell permeant*
Fluo-5F, pentapotassium Salt *Cell impermeant*
Fluo-5N, AM *Cell permeant*
Fluo-5N, pentapotassium Salt *Cell impermeant*
Screen Quest™ Fluo-4 No Wash Calcium Assay Kit
Calbryte™ 520 AM
Calbryte™ 520, potassium salt
Calbryte™ 590 AM
Calbryte™ 590, potassium salt
Calbryte™ 630 AM
Calbryte™ 630, potassium salt
Screen Quest™ Calbryte-520 Probenecid-Free and Wash-Free Calcium Assay Kit
Screen Quest™ Calbryte-590 Probenecid-Free and Wash-Free Calcium Assay Kit
Calbryte™-520L AM
Calbryte™-520L, potassium salt
Cal-500™, potassium salt
Cal-500™ AM
Cal-670™, potassium salt
Cal-670™-Dextran Conjugate *MW 3,000*
Cal-670™-Dextran Conjugate *MW 10,000*
Cal-770™, potassium salt
Cal-770™-Dextran Conjugate *MW 3,000*
Cal-770™-Dextran Conjugate *MW 10,000*
Calbryte™-520XL azide
Calbryte™-520XL, potassium salt
Calbryte™-520XL AM
Calbryte™-520XL-Dextran
RatioWorks™ Cal-520L®/Cy5-Dextran Conjugate *MW 10,000*
RatioWorks™ Cal-520®/zFluor 647™ -Dextran Conjugate *MW 10,000*
Cal-590L® Dextran Conjugate *MW 10,000*
RatioWorks™ Cal-590L®/Cy5-Dextran Conjugate *MW 10,000*
Show More (80)

OverviewpdfSDSpdfProtocol


Molecular weight
1048.9
Excitation (nm)
492
Emission (nm)
515
Quantum yield
0.751
Calcium measurement is critical for numerous biological investigations. Fluorescent probes showing spectral responses upon binding calcium have enabled researchers to investigate changes in intracellular free calcium concentrations using fluorescence microscopy, flow cytometry, fluorescence spectroscopy, and fluorescence microplate readers. Cal-520® has been proven to be the best green fluorescent calcium indicator. Conceivably this amine-reactive Cal-520® NHS ester could be coupled to an IgG or other carrier molecules to prepare a calcium-sensitive bioconjugate for monitoring calcium change spatially for a specific target.

Example protocol


PREPARATION OF STOCK SOLUTIONS

Unless otherwise noted, all unused stock solutions should be divided into single-use aliquots and stored at -20 °C after preparation. Avoid repeated freeze-thaw cycles

Protein stock solution (Solution A)
  1. Mix 100 µL of a reaction buffer (e.g., 1 M  sodium carbonate solution or 1 M phosphate buffer with pH ~9.0) with 900 µL of the target protein solution (e.g., antibody, protein concentration >2 mg/mL if possible) to give 1 mL protein labeling stock solution.

    Note: The pH of the protein solution (Solution A) should be 8.5 ± 0.5. If the pH of the protein solution is lower than 8.0, adjust the pH to the range of 8.0-9.0 using 1 M  sodium bicarbonate solution or 1 M pH 9.0 phosphate buffer.

    Note: The protein should be dissolved in 1X phosphate buffered saline (PBS), pH 7.2-7.4. If the protein is dissolved in Tris or glycine buffer, it must be dialyzed against 1X PBS, pH 7.2-7.4, to remove free amines or ammonium salts (such as ammonium sulfate and ammonium acetate) that are widely used for protein precipitation.

    Note: Impure antibodies or antibodies stabilized with bovine serum albumin (BSA) or gelatin will not be labeled well. The presence of sodium azide or thimerosal might also interfere with the conjugation reaction. Sodium azide or thimerosal can be removed by dialysis or spin column for optimal labeling results.

    Note: The conjugation efficiency is significantly reduced if the protein concentration is less than 2 mg/mL. The final protein concentration range of 2-10 mg/mL is recommended for optimal labeling efficiency.

Cal-520® NHS ester stock solution (Solution B)
  1. Add anhydrous DMSO into the vial of Cal-520® NHS ester to make a 10 mM stock solution. Mix well by pipetting or vortex.

    Note: Prepare the dye stock solution (Solution B) before starting the conjugation. Use promptly. Extended storage of the dye stock solution may reduce the dye activity. Solution B can be stored in the freezer for two weeks when kept from light and moisture. Avoid freeze-thaw cycles.

SAMPLE EXPERIMENTAL PROTOCOL

This labeling protocol was developed for the conjugate of Goat anti-mouse IgG with Cal-520® NHS ester. You might need further optimization for your particular proteins.

Note: Each protein requires a distinct dye/protein ratio, which also depends on the properties of dyes. Over-labeling of a protein could detrimentally affect its binding affinity, while the protein conjugates of low dye/protein ratio give reduced sensitivity.

Run conjugation reaction
  1. Use a 10:1 molar ratio of Solution B (dye)/Solution A (protein) as the starting point:  Add 5 µL of the dye stock solution (Solution B, assuming the dye stock solution is 10 mM) into the vial of the protein solution (95 µL of Solution A) with effective shaking. The concentration of the protein is ~0.05 mM assuming the protein concentration is 10 mg/mL, and the molecular weight of the protein is ~200KD.

    Note: We recommend using a 10:1 molar ratio of Solution B (dye)/Solution A (protein). If it is too less or too high, determine the optimal dye/protein ratio at 5:1, 15:1, and 20:1, respectively.

  2. Continue to rotate or shake the reaction mixture at room temperature for 30-60 minutes.

Purify the conjugation

The following protocol is an example of dye-protein conjugate purification by using a Sephadex G-25 column.

  1. Prepare Sephadex G-25 column according to the manufacture instruction.
  2. Load the reaction mixture (From "Run conjugation reaction") to the top of the Sephadex G-25 column.
  3. Add PBS (pH 7.2-7.4) as soon as the sample runs just below the top resin surface.
  4. Add more PBS (pH 7.2-7.4) to the desired sample to complete the column purification. Combine the fractions that contain the desired dye-protein conjugate.

    Note: For immediate use, the dye-protein conjugate must be diluted with staining buffer, and aliquoted for multiple uses.

    Note: For longer-term storage, the dye-protein conjugate solution needs to be concentrated or freeze-dried.

Calculators


Common stock solution preparation

Table 1. Volume of DMSO needed to reconstitute specific mass of Cal-520® NHS Ester to given concentration. Note that volume is only for preparing stock solution. Refer to sample experimental protocol for appropriate experimental/physiological buffers.

0.1 mg0.5 mg1 mg5 mg10 mg
1 mM95.338 µL476.69 µL953.38 µL4.767 mL9.534 mL
5 mM19.068 µL95.338 µL190.676 µL953.38 µL1.907 mL
10 mM9.534 µL47.669 µL95.338 µL476.69 µL953.38 µL

Molarity calculator

Enter any two values (mass, volume, concentration) to calculate the third.

Mass (Calculate)Molecular weightVolume (Calculate)Concentration (Calculate)Moles
/=x=

Spectrum


Open in Advanced Spectrum Viewer
spectrum

Spectral properties

Excitation (nm)492
Emission (nm)515
Quantum yield0.751

Images


Citations


View all 93 citations: Citation Explorer
Advances in Two-Photon Scanning and Scanless Microscopy Technologies for Functional Neural Circuit Imaging
Authors: Schultz, Simon R and Copel, undefined and , Caroline S and Foust, Am and a J , undefined and Quicke, Peter and Schuck, Renaud
Journal: Proceedings of the IEEE (2017): 139--157
Interstitial cell modulation of pyeloureteric peristalsis in the mouse renal pelvis examined using FIBSEM tomography and calcium indicators
Authors: Hashitani, Hikaru and Nguyen, Michael J and Noda, Haruka and Mitsui, Retsu and Higashi, Ryuhei and Ohta, Keisuke and Nakamura, Kei-Ichiro and Lang, Richard J
Journal: Pfl&uuml;gers Archiv-European Journal of Physiology (2017): 1--17
Extensive Ca 2+ leak through K4750Q cardiac ryanodine receptors caused by cytosolic and luminal Ca 2+ hypersensitivity
Authors: Uehara, Akira and Murayama, Takashi and Yasukochi, Midori and Fill, Michael and Horie, Minoru and Okamoto, Toru and Matsuura, Yoshiharu and Uehara, Kiyoko and Fujimoto, Takahiro and Sakurai, Takashi and others, undefined
Journal: The Journal of general physiology (2017): 199--218
Synchronicity and Rhythmicity of Purkinje Cell Firing during Generalized Spike-and-Wave Discharges in a Natural Mouse Model of Absence Epilepsy Complex Spike Synchronicity during GSWDs
Authors: Kros, Lieke and Lindeman, S and er , undefined and Eelkman Rooda, Oscar HJ and Murugesan, Pavithra and Bina, Lorenzo and Bosman, Laurens WJ and De Zeeuw, Chris I and Hoebeek, Freek E
Journal: Frontiers in Cellular Neuroscience (2017): 346
Simultaneous Measurement of Neural Activities of Acute Mouse Hippocampal Slices Using Multi-Electrode Array System and Laser Confocal Calcium Imaging
Authors: Hamasaki, Yuuta and Haba, Natsumi and Iwata, Naoki and Uno, Yoshiki and Saito, Minoru
Journal: Journal of Behavioral and Brain Science (2017): 68
Ca 2+ signals initiate at immobile IP 3 receptors adjacent to ER-plasma membrane junctions
Authors: Thillaiappan, Nagendra Babu and Chavda, Alap P and Tovey, Stephen C and Prole, David L and Taylor, Colin W
Journal: Nature Communications (2017): 1505
Mechanical loading disrupts osteocyte plasma membranes which initiates mechanosensation events in bone
Authors: Yu, Kanglun and Sellman, David P and Bahraini, Anoosh and Hagan, Mackenzie L and Elsherbini, Ahmed and Vanpelt, Kayce T and Marshall, Peyton L and Hamrick, Mark W and McNeil, Anna and McNeil, Paul L and others, undefined
Journal: Journal of Orthopaedic Research (2017)
Neonatal CX26 removal impairs neocortical development and leads to elevated anxiety
Authors: Su, Xin and Chen, Jing-Jing and Liu, Lin-Yun and Huang, Qian and Zhang, Li-Zhao and Li, Xiao-Yang and He, Xiang-Nan and Lu, Wenlian and Sun, Shan and Li, Huawei and others, undefined
Journal: Proceedings of the National Academy of Sciences (2017): 201613237
Flexible polygon-mirror based laser scanning microscope platform for multiphoton in-vivo imaging
Authors: Li, YX and Gautam, V and Br&uuml;stle, A and Cockburn, IA and Daria, VR and Gillespie, C and Gaus, K and Alt, C and Lee, WM
Journal: Journal of Biophotonics (2017)
Mechanism for Triggered Waves in Atrial Myocytes
Authors: Shiferaw, Yohannes and Aistrup, Gary L and Wasserstrom, J Andrew
Journal: Biophysical Journal (2017): 656--670