logo
AAT Bioquest

5(6)-FAM cadaverine

Product Image
Product Image
Gallery Image 1
Ordering information
Price
Catalog Number
Unit Size
Quantity
Add to cart
Additional ordering information
Telephone1-800-990-8053
Fax1-800-609-2943
Emailsales@aatbio.com
InternationalSee distributors
Bulk requestInquire
Custom sizeInquire
ShippingStandard overnight for United States, inquire for international
Request quotation
Physical properties
Molecular weight574.50
SolventDMSO
Spectral properties
Correction Factor (260 nm)0.32
Correction Factor (280 nm)0.178
Extinction coefficient (cm -1 M -1)83000
Excitation (nm)493
Emission (nm)517
Storage, safety and handling
H-phraseH303, H313, H333
Hazard symbolXN
Intended useResearch Use Only (RUO)
R-phraseR20, R21, R22
StorageFreeze (< -15 °C); Minimize light exposure
UNSPSC12171501

OverviewpdfSDSpdfProtocol


Molecular weight
574.50
Correction Factor (260 nm)
0.32
Correction Factor (280 nm)
0.178
Extinction coefficient (cm -1 M -1)
83000
Excitation (nm)
493
Emission (nm)
517
FAM cadaverine is an excellent building block for developing fluoresceinated bioconjugates. It is also a fluorescent transglutaminase substrate to label proteins by transaminidation.

Calculators


Common stock solution preparation

Table 1. Volume of DMSO needed to reconstitute specific mass of 5(6)-FAM cadaverine to given concentration. Note that volume is only for preparing stock solution. Refer to sample experimental protocol for appropriate experimental/physiological buffers.

0.1 mg0.5 mg1 mg5 mg10 mg
1 mM174.064 µL870.322 µL1.741 mL8.703 mL17.406 mL
5 mM34.813 µL174.064 µL348.129 µL1.741 mL3.481 mL
10 mM17.406 µL87.032 µL174.064 µL870.322 µL1.741 mL

Molarity calculator

Enter any two values (mass, volume, concentration) to calculate the third.

Mass (Calculate)Molecular weightVolume (Calculate)Concentration (Calculate)Moles
/=x=

Spectrum


Open in Advanced Spectrum Viewer
spectrum

Spectral properties

Correction Factor (260 nm)0.32
Correction Factor (280 nm)0.178
Extinction coefficient (cm -1 M -1)83000
Excitation (nm)493
Emission (nm)517

Product Family


NameExcitation (nm)Emission (nm)Extinction coefficient (cm -1 M -1)Correction Factor (260 nm)Correction Factor (280 nm)
5(6)-FAM, SE [5-(and-6)-Carboxyfluorescein, succinimidyl ester] *CAS 117548-22-8*493517830000.320.178
5(6)-FAM ethylenediamine493517830000.320.178
5(6)-TAMRA cadaverine552578900000.320.178

Images


Citations


View all 3 citations: Citation Explorer
Multicellular Vascularized Engineered Tissues through User-Programmable Biomaterial Photodegradation
Authors: Arakawa, Christopher K and Badeau, Barry A and Zheng, Ying and DeForest, Cole A
Journal: Advanced Materials (2017)
Green tea inhibited the elimination of nephro-cardiovascular toxins and deteriorated the renal function in rats with renal failure
Authors: Peng, Yu-Hsuan and Sweet, Douglas H and Lin, Shiuan-Pey and Yu, Chung-Ping and Chao, Pei-Dawn Lee and Hou, Yu-Chi
Journal: Scientific reports (2015)
Advances in Quantitative FRET-Based Methods for Studying Nucleic Acids
Authors: Preus, S&oslash;ren and Wilhelmsson, L Marcus
Journal: ChemBioChem (2012): 1990--2001

References


View all 137 references: Citation Explorer
Carboxyfluorescein leakage from poly(ethylene glycol)-grafted liposomes induced by the interaction with serum
Authors: Hashizaki K, Taguchi H, Sakai H, Abe M, Saito Y, Ogawa N.
Journal: Chem Pharm Bull (Tokyo) (2006): 80
Quantifying lymphocyte kinetics in vivo using carboxyfluorescein diacetate succinimidyl ester (cfse)
Authors: Asquith B, Debacq C, Florins A, Gillet N, Sanchez-Alcaraz T, Mosley A, Willems L.
Journal: Proc Biol Sci (2006): 1165
Application of alamar blue/5-carboxyfluorescein diacetate acetoxymethyl ester as a noninvasive cell viability assay in primary hepatocytes from rainbow trout
Authors: Schreer A, Tinson C, Sherry JP, Schirmer K.
Journal: Anal Biochem (2005): 76
Low incidence of acute rejection after living-donor liver transplantation: Immunologic analyses by mixed lymphocyte reaction using a carboxyfluorescein diacetate succinimidyl ester labeling technique
Authors: Tanaka Y, Ohdan H, Onoe T, Mitsuta H, Tashiro H, Itamoto T, Asahara T.
Journal: Transplantation (2005): 1262
Evidence for dimer formation by an amphiphilic heptapeptide that mediates chloride and carboxyfluorescein release from liposomes
Authors: Pajewski R, Ferdani R, Pajewska J, Djedovic N, Schlesinger PH, Gokel GW.
Journal: Org Biomol Chem (2005): 619
Carboxyfluorescein diacetate succinimidyl ester fluorescent dye for cell labeling
Authors: Wang XQ, Duan XM, Liu LH, Fang YQ, Tan Y.
Journal: Acta Biochim Biophys Sin (Shanghai) (2005): 379
Application of glutaraldehyde for the staining of esterase-active cells with carboxyfluorescein diacetate
Authors: Morono Y, Takano S, Miyanaga K, Tanji Y, Unno H, Hori K.
Journal: Biotechnol Lett (2004): 379
Drug efflux transport properties of 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein acetoxymethyl ester (bcecf-am) and its fluorescent free acid, bcecf
Authors: Bachmeier CJ, Trickler WJ, Miller DW.
Journal: J Pharm Sci (2004): 932
pruning of alloreactive cd4+ t cells using 5- (and 6-)carboxyfluorescein diacetate succinimidyl ester prolongs skin allograft survival
Authors: Watson D, Zhang GY, Sartor M, Alex and er SI., undefined
Journal: J Immunol (2004): 6574
Cyclodextrin enhanced transdermal delivery of piroxicam and carboxyfluorescein by electroporation
Authors: Murthy SN, Zhao YL, Sen A, Hui SW.
Journal: J Control Release (2004): 393