Actively helping customers, employees and the global community during the coronavirus SARS-CoV-2 outbreak.  Learn more >>

(Ac-ANW)2R110

Chemical structure for (Ac-ANW)2R110
Chemical structure for (Ac-ANW)2R110
Ordering information
Price ()
Catalog Number13455
Unit Size
Find Distributor
Additional ordering information
Telephone1-408-733-1055
Fax1-408-733-1304
Emailsales@aatbio.com
InternationalSee distributors
ShippingStandard overnight for United States, inquire for international
Physical properties
Molecular weight1159.16
SolventDMSO
Spectral properties
Extinction coefficient (cm -1 M -1)80000
Excitation (nm)500
Emission (nm)522
Storage, safety and handling
H-phraseH303, H313, H333
Hazard symbolXN
Intended useResearch Use Only (RUO)
R-phraseR20, R21, R22
StorageFreeze (< -15 °C); Minimize light exposure
UNSPSC12352200

OverviewpdfSDSpdfProtocol


See also: Enzymes
Molecular weight
1159.16
Extinction coefficient (cm -1 M -1)
80000
Excitation (nm)
500
Emission (nm)
522
(Ac-ANW)2R110 is a selective fluorogenic substrate for proteasome 20S-beta 5i. The non-fluorescent substrate generates a bright green fluorescent rhodamine 110 product that has an emission spectra that can be easily detected with a FITC filter set. This rhodamine 110 substrate is much more sensitive than the AMC-, AFC- or 4-nitroaniline-based substrates. The most common form of the proteasome is known as the 26S proteasome that contains one 20S core particle structure and two 19S regulatory caps. All 20S particles consist of four stacked heptameric ring structures that are themselves composed of two different types of subunits; alpha subunits are structural in nature, whereas beta subunits are predominantly catalytic. The outer two rings in the stack consist of seven alpha subunits each, which serve as docking domains for the regulatory particles and the alpha subunits N-termini form a gate that blocks unregulated access of substrates to the interior cavity. The inner two rings each consist of seven beta subunits and contain the protease active sites that perform the proteolysis reactions. In mammals, the beta1, beta2, and beta5 subunits are catalytic. Although they share a common mechanism, they have three distinct substrate specificities considered chymotrypsin-like, trypsin-like, and peptidyl-glutamyl peptide-hydrolyzing. Alternative beta forms denoted beta 1i, beta 2i, and beta 5i can be expressed in hematopoietic cells in response to exposure to pro-inflammatory signals such as cytokines, in particular, interferon gamma.

Calculators


Common stock solution preparation

Table 1. Volume of DMSO needed to reconstitute specific mass of (Ac-ANW)2R110 to given concentration. Note that volume is only for preparing stock solution. Refer to sample experimental protocol for appropriate experimental/physiological buffers.

0.1 mg0.5 mg1 mg5 mg10 mg
1 mM86.269 µL431.347 µL862.694 µL4.313 mL8.627 mL
5 mM17.254 µL86.269 µL172.539 µL862.694 µL1.725 mL
10 mM8.627 µL43.135 µL86.269 µL431.347 µL862.694 µL

Molarity calculator

Enter any two values (mass, volume, concentration) to calculate the third.

Mass (Calculate)Molecular weightVolume (Calculate)Concentration (Calculate)Moles
/=x=

Spectrum


Open in Advanced Spectrum Viewer
spectrum

Spectral properties

Extinction coefficient (cm -1 M -1)80000
Excitation (nm)500
Emission (nm)522

Citations


View all 6 citations: Citation Explorer
Gender specific changes in energy metabolism and protein degradation as major pathways affected in livers of mice treated with ibuprofen
Authors: Tiwari, Shuchita and Mishra, Manish and Salemi, Michelle R and Phinney, Brett S and Newens, Joanne L and Gomes, Aldrin V
Journal: Scientific reports (2020): 1--17
Gender-specific changes in energy metabolism and protein degradation as major pathways affected in livers of mice treated with ibuprofen
Authors: Tiwari, Shuchita and Mishra, Manish and Salemi, Michelle R and Phinney, Brett S and Newens, Joanne L and Gomes, Aldrin V
Journal: Scientific reports (2020): 1--17
Diabetogenic agent alloxan is a proteasome inhibitor
Authors: Zhou, Wenjuan and Wei, Lingling and Xiao, Ting and Lai, Chunyou and Peng, Min and Xu, Lingli and Luo, Xiangwei and Deng, Shaoping and Zhang, Fengxue
Journal: Biochemical and Biophysical Research Communications (2017): 400--406
Delineation of molecular pathways involved in cardiomyopathies caused by troponin T mutations
Authors: Gilda, Jennifer E and Lai, Xianyin and Witzmann, Frank A and Gomes, Aldrin V
Journal: Molecular & Cellular Proteomics (2016): 1962--1981
Diclofenac induces proteasome and mitochondrial dysfunction in murine cardiomyocytes and hearts
Authors: Ghosh, Rajeshwary and Goswami, Sumanta K and Feitoza, Luis Felipe BB and Hammock, Bruce and Gomes, Aldrin V
Journal: International Journal of Cardiology (2016): 923--935
Advanced-glycation-end-product-induced formation of immunoproteasomes: involvement of RAGE and Jak2/STAT1
Authors: Grimm, Stefanie and Ott, Christiane and Hörlacher, Melanie and Weber, Daniela and Höhn, Annika and Grune, Tilman
Journal: Biochemical Journal (2012): 127--139

References


View all 36 references: Citation Explorer
Alveolar extracellular 20S proteasome in patients with acute respiratory distress syndrome
Authors: Sixt SU, Adamzik M, Spyrka D, Saul B, Hakenbeck J, Wohlschlaeger J, Costabel U, Kloss A, Giesebrecht J, Dahlmann B, Peters J.
Journal: Am J Respir Crit Care Med (2009): 1098
Quinone reductase acts as a redox switch of the 20S yeast proteasome
Authors: Sollner S, Schober M, Wagner A, Prem A, Lorkova L, Palfey BA, Groll M, Macheroux P.
Journal: EMBO Rep (2009): 65
Comparative expression analysis and characterization of 20S proteasomes in human intestinal tissues: The proteasome pattern as diagnostic tool for IBD patients
Authors: Visekruna A, Joeris T, Schmidt N, Lawrenz M, Ritz JP, Buhr HJ, Steinhoff U.
Journal: Inflamm Bowel Dis (2009): 526
Enzymatic properties of the 20S proteasome in wheat endosperm and its biochemical characteristics after seed imbibition
Authors: Shi C, Rui Q, Xu LL.
Journal: Plant Biol (Stuttg) (2009): 849
BCL-2 family regulation by the 20S proteasome inhibitor bortezomib
Authors: Fennell DA, Chacko A, Mutti L.
Journal: Oncogene (2008): 1189
Toward a full characterization of the human 20S proteasome subunits and their isoforms by a combination of proteomic approaches
Authors: Uttenweiler-Joseph S, Claverol S, Sylvius L, Bousquet-Dubouch MP, Burlet-Schiltz O, Monsarrat B.
Journal: Methods Mol Biol (2008): 111
Circulating 20S proteasome levels in patients with mixed connective tissue disease and systemic lupus erythematosus
Authors: Majetschak M, Perez M, Sorell LT, Lam J, Maldonado ME, Hoffman RW.
Journal: Clin Vaccine Immunol (2008): 1489
The 20S proteasome of Schistosoma mansoni: a proteomic analysis
Authors: Castro-Borges W, Cartwright J, Ashton PD, Braschi S, Guerra Sa R, Rodrigues V, Wilson RA, Curwen RS.
Journal: Proteomics (2007): 1065
Design and synthesis of a novel class of furan-based molecules as potential 20S proteasome inhibitors
Authors: Fu Y, Xu B, Zou X, Ma C, Yang X, Mou K, Fu G, Lu Y, Xu P.
Journal: Bioorg Med Chem Lett (2007): 1102
beta-Subunit appendages promote 20S proteasome assembly by overcoming an Ump1-dependent checkpoint
Authors: Li X, Kusmierczyk AR, Wong P, Emili A, Hochstrasser M.
Journal: Embo J (2007): 2339