logo
AAT Bioquest

Amplite® Colorimetric Sphingomyelinase Assay Kit *Blue Color*

Sphingomyelinase dose response was measured on a 96-well white wall/clear bottom plate with Amplite® Colorimetric Sphingomyelinase Assay Kit using a SpectraMax microplate reader (Molecular Devices).
Sphingomyelinase dose response was measured on a 96-well white wall/clear bottom plate with Amplite® Colorimetric Sphingomyelinase Assay Kit using a SpectraMax microplate reader (Molecular Devices).
Sphingomyelinase dose response was measured on a 96-well white wall/clear bottom plate with Amplite® Colorimetric Sphingomyelinase Assay Kit using a SpectraMax microplate reader (Molecular Devices).
Ordering information
Price
Catalog Number
Unit Size
Quantity
Add to cart
Additional ordering information
Telephone1-800-990-8053
Fax1-800-609-2943
Emailsales@aatbio.com
InternationalSee distributors
Bulk requestInquire
Custom sizeInquire
ShippingStandard overnight for United States, inquire for international
Request quotation
Storage, safety and handling
Certificate of OriginDownload PDF
H-phraseH303, H313, H333
Hazard symbolXN
Intended useResearch Use Only (RUO)
R-phraseR20, R21, R22
UNSPSC12352200

OverviewpdfSDSpdfProtocol


Sphingomyelinase (SMase) is an enzyme that is responsible for cleaving sphingomyelin (SM) to phosphocholine and ceramide. Activation of SMases in cells plays an important role in the cellular responses. Five types of sphingomyelinase (SMase) have been identified based on their cation dependence and pH optima of action. They are lysosomal acid SMase, secreted zinc-dependent acid SMase, magnesium-dependent neutral SMase, magnesium-independent neutral SMase, and alkaline SMase. Among the five types, the lysosomal acidic SMase and the magnesium-dependent neutral SMase are considered major candidates for the production of ceramide in the cellular response to stress. Our Amplite® Colorimetric Sphingomyelinase Assay Kit provides a sensitive method for detecting neutral SMase activity or screening its inhibitors. The kit uses Amplite® UltraBlue as a colorimetric probe to indirectly quantify the phosphocholine produced from the hydrolysis of sphingomyelin (SM) by sphingomyelinase (SMase). It can be used for measuring the SMase activity in blood, cell extracts or other solutions. The absorbance of light at 655 nm is proportional to the formation of phosphocholine, therefore to the SMase activity. The kit is an optimized "mix and read" assay that is compatible with HTS liquid handling instruments.

Platform


Absorbance microplate reader

Absorbance655 nm
Recommended plateClear bottom

Components


Example protocol


AT A GLANCE

Protocol summary

  1. Prepare sphingomyelin working solution (50 µL)
  2. Add SMase standards and/or SMase test samples (50 µL)
  3. Incubate at 37°C for 1 - 2 hours
  4. Add sphingomyelinase working solution (50 µL)
  5. Incubate at RT for 1 - 2 hours
  6. Monitor absorbance at 655 nm

Important notes
Thaw one vial (or bottle) of each kit component at room temperature before starting your experiment.

PREPARATION OF STOCK SOLUTION

Unless otherwise noted, all unused stock solutions should be divided into single-use aliquots and stored at -20 °C after preparation. Avoid repeated freeze-thaw cycles.

1. Sphingomyelinase standard stock solution (10 U/mL):
Add 20 µL of PBS with 0.1% BSA into the vial of Sphingomyelinase Standard (Component F) to make a 10 units/mL sphingomyelinase standard stock solution.

2. Amplite™ UltraBlue stock solution (200X):
Add 100 µL of DMSO (Component G) into the vial of Amplite™ UltraBlue (Component C) to make 200X Amplite™ UltraBlue stock solution. Note: The Amplite™ UltraBlue is unstable in the presence of thiols (such as DTT and 2-mercaptoethanol). The final concentration of DTT or 2-mercaptoethanol in the reaction should be lower than 10 µM. Amplite™ UltraBlue is also unstable at high pH (>8.5). The reactions should be performed at pH 7 - 8. pH 7.4 is recommended for the assay buffer.

PREPARATION OF STANDARD SOLUTION

Sphingomyelinase standard

For convenience, use the Serial Dilution Planner: https://www.aatbio.com/tools/serial-dilution/13620

Add 1 µL of 10 units/mL sphingomyelinase standard stock solution into 1000 µL assay buffer (Component E) to generate a 10 mU/mL sphingomyelinase standard. Take 500 µL of 10 mU/mL sphingomyelinase standard to perform 1:2 serial dilutions to get serially diluted sphingomyelinase standards (SMase7 - SMase1). Note: Diluted sphingomyelinase standard stock solution is unstable and should be used within 4 hours.

PREPARATION OF WORKING SOLUTION

1. Sphingomyelin working solution:
Add 50 µL of Sphingomyelin (Component B) into 5 mL SMase Reaction Buffer (Component D) and mix well. Note: The sphingomyelin working solution should be used promptly.

2. Sphingomyelinase working solution:
Add 5 mL of Assay Buffer (Component E) into the bottle of Enzyme Mix (Component A) and mix well. Add 50 μL of 200X Amplite™ UltraBlue stock solution into the bottle of Enzyme Mix solution before starting the assay. Note: The sphingomyelinase working solution should be used promptly and kept from light; longer storage is likely to cause high assay background. The cloudiness of the mixture is normal; it will not interfere with the assay performance.

SAMPLE EXPERIMENTAL PROTOCOL

Table 1. Layout of sphingomyelinase standards and test samples in a white wall/clear bottom 96-well microplate. SMase = Sphingomyelinase Standards (SMase1 - SMase7, 0.078 to 5 mU/mL), BL = Blank Control, TS = Test Samples.

BLBLTSTS
SMase1SMase1......
SMase2SMase2......
SMase3SMase3  
SMase4SMase4  
SMase5SMase5  
SMase6SMase6  
SMase7SMase7  

Table 2. Reagent composition for each well.

WellVolumeReagent
SMase1 - SMase750 µLSerial Dilutions (0.078 to 5 mU/mL)
BL50 µLAssay Buffer
TS50 µLTest Sample
  1. Prepare sphingomyelinase standards (SMase), blank controls (BL), and test samples (TS) according to the layout provided in Tables 1 and 2. For a 384-well plate, use 25 µL of reagent per well instead of 50 µL. Note: Treat your cells or tissue samples as desired.

  2. Add 50 µL of sphingomyelin working solution to each well of sphingomyelinase standard, blank control, and test samples to make the total assay volume of 100 µL/well. For a 384-well plate, add 25 µL of sphingomyelin working solution into each well instead, for a total volume of 50 µL/well.

  3. Incubate the reaction mixture at 37°C for 1 - 2 hours.

  4. Add 50 µL of sphingomyelinase working solution to each well of sphingomyelinase standard, blank control, and test samples to make the total assay volume of 150 µL/well. For a 384-well plate, add 25 µL of sphingomyelinase assay working solution into each well instead, for a total volume of 75 µL/well.

  5. Incubate the reaction mixture for 1 - 2 hours at room temperature (protected from light).

  6. Monitor the absorbance increase with an absorbance microplate reader at 655 nm.

Images


Citations


View all 7 citations: Citation Explorer
A study on the targeting of ceramide metabolism by (-)-epicatechin gallate, catechin and quercetin in A-549 lung cancer cell line
Authors: Mashhadi Akbar Boojar, Masoud
Journal: Nova Biologica Reperta (2019): 275--283
Doxepin mitigates noise induced neuronal damage in primary auditory cortex of mice via suppression of acid sphingomyelinase/ceramide pathway
Authors: Su, Yu-Ting and Meng, Xing-Xing and Zhang, Xi and Guo, Yi-Bin and Zhang, Hai-Jun and Cheng, Yao-Ping and Xie, Xiao-Ping and Chang, Yao-Ming and Bao, Jun-Xiang
Journal: The Anatomical Record (2017)
Riccardin DN induces lysosomal membrane permeabilization by inhibiting acid sphingomyelinase and interfering with sphingomyelin metabolism in vivo
Authors: Li, Lin and Niu, Huanmin and Sun, Bin and Xiao, Yanan and Li, Wei and Yuan, Huiqing and Lou, Hongxiang
Journal: Toxicology and Applied Pharmacology (2016): 175--184
New Aspects of Silibinin Stereoisomers and their 3-O-galloyl Derivatives on Cytotoxicity and Ceramide Metabolism in Hep G2 hepatocarcinoma Cell Line
Authors: Mashhadi Akbar Boojar, Mahdi and Ejtemaei Mehr, Shahram and Hassanipour, Mahsa and Mashhadi Akbar Boojar, Masoud and Dehpour, Ahmad Reza
Journal: Iranian Journal of Pharmaceutical Research (2016): 421--433
Mitochondrial respiration controls lysosomal function during inflammatory T cell responses
Authors: Baixauli, Francesc and Acín-Pérez, Rebeca and Villarroya-Beltrí, Carolina and Mazzeo, Carla and Nunez-Andrade, Norman and Gab, undefined and é-Rodriguez, Enrique and Ledesma, Maria Dolores and Blázquez, Alberto and Martin, Miguel Angel and Falcón-Pérez, Juan Manuel and others, undefined
Journal: Cell metabolism (2015): 485--498
The ATP-binding cassette transporter-2 (ABCA2) regulates esterification of plasma membrane cholesterol by modulation of sphingolipid metabolism
Authors: Davis, Warren
Journal: Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids (2014): 168--179
A high-throughput sphingomyelinase assay using natural substrate
Authors: Xu, Miao and Liu, Ke and Southall, Noel and Marugan, Juan J and Remaley, Alan T and Zheng, Wei
Journal: Analytical and bioanalytical chemistry (2012): 407--414

References


View all 65 references: Citation Explorer
Phospholipase C and sphingomyelinase activities of the Clostridium perfringens alpha-toxin
Authors: Urbina P, Flores-Diaz M, Alape-Giron A, Alonso A, Goni FM.
Journal: Chem Phys Lipids (2009): 51
Sphingomyelinase-induced ceramide production stimulate calcium-independent JNK and PP2A activation following cerebral ischemia
Authors: Tian HP, Qiu TZ, Zhao J, Li LX, Guo J.
Journal: Brain Inj (2009): 1073
SMase II, a new sphingomyelinase D from Loxosceles laeta venom gland: molecular cloning, expression, function and structural analysis
Authors: de Santi Ferrara GI, Fern and es-Pedrosa Mde F, Junqueira-de-Azevedo Ide L, Goncalves-de-Andrade RM, Portaro FC, Manzoni-de-Almeida D, Murakami MT, Arni RK, van den Berg CW, Ho PL, Tambourgi DV.
Journal: Toxicon (2009): 743
Neutral sphingomyelinase-induced ceramide accumulation by oxidative stress during carbon tetrachloride intoxication
Authors: Ichi I, Kamikawa C, Nakagawa T, Kobayashi K, Kataoka R, Nagata E, Kitamura Y, Nakazaki C, Matsura T, Kojo S.
Journal: Toxicology (2009): 33
Purification, characterization, and gene cloning of sphingomyelinase C from Streptomyces griseocarneus NBRC13471
Authors: Sugimori D., undefined
Journal: J Biosci Bioeng (2009): 293
Transcriptional regulation of neutral sphingomyelinase 2 gene expression of a human breast cancer cell line, MCF-7, induced by the anti-cancer drug, daunorubicin
Authors: Ito H, Murakami M, Furuhata A, Gao S, Yoshida K, Sobue S, Hagiwara K, Takagi A, Kojima T, Suzuki M, Banno Y, Tanaka K, Tamiya-Koizumi K, Kyogashima M, Nozawa Y, Murate T.
Journal: Biochim Biophys Acta (2009): 681
ApoCIII-enriched LDL in type 2 diabetes displays altered lipid composition, increased susceptibility for sphingomyelinase, and increased binding to biglycan
Authors: Hiukka A, Stahlman M, Pettersson C, Levin M, Adiels M, Teneberg S, Leinonen ES, Hulten LM, Wiklund O, Oresic M, Olofsson SO, Taskinen MR, Ekroos K, Boren J.
Journal: Diabetes (2009): 2018
Structure and function of sphingomyelinase
Authors: Oda M., undefined
Journal: Yakugaku Zasshi (2009): 1233
Expression of alkaline sphingomyelinase in yeast cells and anti-inflammatory effects of the expressed enzyme in a rat colitis model
Authors: Andersson D, Kotarsky K, Wu J, Agace W, Duan RD.
Journal: Dig Dis Sci (2009): 1440
A complex extracellular sphingomyelinase of Pseudomonas aeruginosa inhibits angiogenesis by selective cytotoxicity to endothelial cells
Authors: Vasil ML, Stonehouse MJ, Vasil AI, Wadsworth SJ, Goldfine H, Bolcome RE, 3rd, Chan J.
Journal: PLoS Pathog (2009): e1000420