Actively helping customers, employees and the global community during the coronavirus SARS-CoV-2 outbreak.  Learn more >>

Calbryte™-520XL-Dextran

Ca2+ dependent fluorescence emission of Calbryte™-520XL indicator (Ex/Em = 490/525 nm).
Ca2+ dependent fluorescence emission of Calbryte™-520XL indicator (Ex/Em = 490/525 nm).
Ordering information
Price ()Discontinued
Catalog Number20648
Unit Size
Find Distributor
Additional ordering information
Telephone1-408-733-1055
Fax1-408-733-1304
Emailsales@aatbio.com
InternationalSee distributors
ShippingStandard overnight for United States, inquire for international
Physical properties
Dissociation constant (Kd, nM)300000
Molecular weight~11000
SolventWater
Spectral properties
Excitation (nm)493
Emission (nm)515
Quantum yield0.751
Storage, safety and handling
H-phraseH303, H313, H333
Hazard symbolXN
Intended useResearch Use Only (RUO)
R-phraseR20, R21, R22
StorageFreeze (< -15 °C); Minimize light exposure
UNSPSC12352200
Related products
Calbryte™ 520 AM
Calbryte™ 520, potassium salt
Calbryte™ 590 AM
Calbryte™ 590, potassium salt
Calbryte™ 630 AM
Calbryte™ 630, potassium salt
Calbryte™-520L AM
Calbryte™-520L, potassium salt
Calbryte™-520XL, potassium salt
Chemical Phosphorylation Reagent I (CPR I)
Cell Meter™ Mitochondrial Hydroxyl Radical Detection Kit *Red Fluorescence*
Cal Green™ 1, hexapotassium salt
Cal Green™ 1, AM [Equivalent to Calcium Green-1, AM]
Cal-590™-Dextran Conjugate *MW 3,000*
Cal-590™-Dextran Conjugate *MW 10,000*
Cal-590™ AM
Cal-590™, sodium salt
Cal-590™, potassium salt
Cal-630™ AM
Cal-630™, sodium salt
Cal-630™, potassium salt
Cal-630™-Dextran Conjugate *MW 3,000*
Cal-630™-Dextran Conjugate *MW 10,000*
Fluo-4 AM *Ultrapure Grade* *CAS 273221-67-3*
Fluo-4, Pentapotassium Salt
Cal Red™ R525/650 potassium salt
Cal Red™ R525/650 AM
Cal-520®-Dextran Conjugate *MW 3,000*
Cal-520®-Dextran Conjugate *MW 10,000*
Cal-520®-Biotin Conjugate
Cal-520®-Biocytin Conjugate
Cal-520® NHS Ester
Cal-520® maleimide
Fluo-3, AM *CAS 121714-22-5*
Fluo-3, AM *UltraPure grade* *CAS 121714-22-5*
Fluo-3, AM *Bulk package* *CAS 121714-22-5*
Fluo-3FF, AM *UltraPure grade* *Cell permeant*
Fluo-3, pentasodium salt
Fluo-3, pentapotassium salt
Fluo-3, pentaammonium salt
Fluo-3FF, pentapotassium salt
Fluo-8®, AM
Fluo-8®, sodium salt
Fluo-8®, potassium salt
Fluo-8H™, AM
Fluo-8H™, sodium salt
Fluo-8L™, AM
Fluo-8L™, sodium salt
Fluo-8L™, potassium salt
Fluo-8FF™, potassium salt
Fluo-8FF™, AM
Cal-520®, AM
Cal-520®, sodium salt
Cal-520®, potassium salt
Cal-520FF™, AM
Cal-520FF™, potassium salt
Screen Quest™ Fluo-8 Medium Removal Calcium Assay Kit *Optimized for Difficult Cell Lines*
Screen Quest™ Fluo-8 No Wash Calcium Assay Kit
Mag-Fluo-4 potassium salt
Mag-Fluo-4 AM
Fluo-2, potassium salt
Fluo-2, AM
Fluo-5F, AM *Cell permeant*
Fluo-5F, pentapotassium Salt *Cell impermeant*
Fluo-5N, AM *Cell permeant*
Fluo-5N, pentapotassium Salt *Cell impermeant*
Cal-520N™, AM
Cal-520N™, potassium salt
Screen Quest™ Fluo-4 No Wash Calcium Assay Kit
Screen Quest™ Calbryte-520 Probenecid-Free and Wash-Free Calcium Assay Kit
Screen Quest™ Calbryte-590 Probenecid-Free and Wash-Free Calcium Assay Kit
Cal-500™, potassium salt
Cal-500™ AM
Cal-670™, potassium salt
Cal-670™-Dextran Conjugate *MW 3,000*
Cal-670™-Dextran Conjugate *MW 10,000*
Cal-770™, potassium salt
Cal-770™-Dextran Conjugate *MW 3,000*
Cal-770™-Dextran Conjugate *MW 10,000*
Cal-520L®-Dextran Conjugate *MW 10,000*
RatioWorks™ Cal-520L®/Cy5-Dextran Conjugate *MW 10,000*
Cal-520L™ maleimide
RatioWorks™ Cal-520®/zFluor 647™ -Dextran Conjugate *MW 10,000*
Cal-590L® Dextran Conjugate *MW 10,000*
RatioWorks™ Cal-590L®/Cy5-Dextran Conjugate *MW 10,000*
Show More (85)

OverviewpdfSDSpdfProtocol


Molecular weight
~11000
Dissociation constant (Kd, nM)
300000
Excitation (nm)
493
Emission (nm)
515
Quantum yield
0.751
Calbryte 520XL dextran is a new fluorescent and cell-impermeable calcium indicator with extremely low affinity. It has Kd ~500 uM which is the similar to the well-known Rhod 5N, but much more stable than Rhod-5N. Calbryte 520XL produces bright fluorescence signal in the presence of calcium ion in high concentration. It has the identical excitation and emission wavelength as Fluo-4, thus the same Fluo-4 assay settings can be readily applied to Calbryte 520XL-based calcium assays. Calbryte 520XL is an excellent alternative to Rhod-5N. We also offer Calbryte 520XL, AM (#20646), potassium salt (#20645), and Calbryte 520XL azide (#20643) that can be readily conjugated to a carrier through the well-know click chemistry.

Spectrum


Open in Advanced Spectrum Viewer
spectrum

Spectral properties

Excitation (nm)493
Emission (nm)515
Quantum yield0.751

Product family


NameExcitation (nm)Emission (nm)Quantum yield
Calbryte™-520XL azide4935150.751
Calbryte™-520XL AM4935150.751

Citations


View all 13 citations: Citation Explorer
Calreticulin regulates TGF-β1-induced epithelial mesenchymal transition through modulating Smad signaling and calcium signaling
Authors: Wu, Yanjiao and Xu, Xiaoli and Ma, Lunkun and Yi, Qian and Sun, Weichao and Tang, Liling
Journal: The International Journal of Biochemistry & Cell Biology (2017)
Monosialoganglioside 1 may alleviate neurotoxicity induced by propofol combined with remifentanil in neural stem cells
Authors: Lu, Jiang and Yao, Xue-qin and Luo, Xin and Wang, Yu and Chung, Sookja Kim and Tang, He-xin and Cheung, Chi Wai and Wang, Xian-yu and Meng, Chen and Li, Qing and others, undefined
Journal: Neural Regeneration Research (2017): 945
Obtaining spontaneously beating cardiomyocyte-like cells from adipose-derived stromal vascular fractions cultured on enzyme-crosslinked gelatin hydrogels
Authors: Yang, Gang and Xiao, Zhenghua and Ren, Xiaomei and Long, Haiyan and Ma, Kunlong and Qian, Hong and Guo, Yingqiang
Journal: Scientific Reports (2017): 41781
Dexmedetomidine reduces hypoxia/reoxygenation injury by regulating mitochondrial fission in rat hippocampal neurons
Authors: Liu, Jia and Du, Qing and Zhu, He and Li, Yu and Liu, Maodong and Yu, Shoushui and Wang, Shilei
Journal: Int J Clin Exp Med (2017): 6861--6868
Di (2-ethylhexyl) phthalate-induced apoptosis in rat INS-1 cells is dependent on activation of endoplasmic reticulum stress and suppression of antioxidant protection
Authors: Sun, Xia and Lin, Yi and Huang, Qiansheng and Shi, Junpeng and Qiu, Ling and Kang, Mei and Chen, Yajie and Fang, Chao and Ye, Ting and Dong, Sijun
Journal: Journal of cellular and molecular medicine (2015): 581--594
The effect of mitochondrial calcium uniporter on mitochondrial fission in hippocampus cells ischemia/reperfusion injury
Authors: Zhao, Lantao and Li, Shuhong and Wang, Shilei and Yu, Ning and Liu, Jia
Journal: Biochemical and biophysical research communications (2015): 537--542
Role of mitochondrial calcium uniporter in regulating mitochondrial fission in the cerebral cortexes of living rats
Authors: Liang, Nan and Wang, Peng and Wang, Shilei and Li, Shuhong and Li, Yu and Wang, Jinying and Wang, Min
Journal: Journal of Neural Transmission (2014): 593--600
Propofol and remifentanil at moderate and high concentrations affect proliferation and differentiation of neural stem/progenitor cells
Authors: Li, Qing and Lu, Jiang and Wang, Xianyu and others, undefined
Journal: Neural regeneration research (2014): 2002
Fungus induces the release of IL-8 in human corneal epithelial cells, via Dectin-1-mediated protein kinase C pathways.
Authors: Peng, Xu-Dong and Zhao, Gui-Qiu and Lin, Jing and Jiang, Nan and Xu, Qiang and Zhu, Cheng-Cheng and Qu, Jain-Qiu and Cong, Lin and Li, Hui
Journal: International journal of ophthalmology (2014): 441--447
Increased expression of cell adhesion molecule 1 by mast cells as a cause of enhanced nerve--mast cell interaction in a hapten-induced mouse model of atopic dermatitis
Authors: Hagiyama, M and Inoue, T and Furuno, T and Iino, T and Itami, S and Nakanishi, M and Asada, H and Hosokawa, Y and Ito, A
Journal: British Journal of Dermatology (2013): 771--778

References


View all 53 references: Citation Explorer
A flow cytometric comparison of Indo-1 to fluo-3 and Fura Red excited with low power lasers for detecting Ca(2+) flux
Authors: Bailey S, Macardle PJ.
Journal: J Immunol Methods (2006): 220
Functional fluo-3/AM assay on P-glycoprotein transport activity in L1210/VCR cells by confocal microscopy
Authors: Orlicky J, Sulova Z, Dovinova I, Fiala R, Zahradnikova A, Jr., Breier A.
Journal: Gen Physiol Biophys (2004): 357
Comparison of human recombinant adenosine A2B receptor function assessed by Fluo-3-AM fluorometry and microphysiometry
Authors: Patel H, Porter RH, Palmer AM, Croucher MJ.
Journal: Br J Pharmacol (2003): 671
Measurement of the dissociation constant of Fluo-3 for Ca2+ in isolated rabbit cardiomyocytes using Ca2+ wave characteristics
Authors: Loughrey CM, MacEachern KE, Cooper J, Smith GL.
Journal: Cell Calcium (2003): 1
A sensitive method for the detection of foot and mouth disease virus by in situ hybridisation using biotin-labelled oligodeoxynucleotides and tyramide signal amplification
Authors: Zhang Z, Kitching P.
Journal: J Virol Methods (2000): 187
Kinetics of onset of mouse sperm acrosome reaction induced by solubilized zona pellucida: fluorimetric determination of loss of pH gradient between acrosomal lumen and medium monitored by dapoxyl (2-aminoethyl) sulfonamide and of intracellular Ca(2+) chang
Authors: Rockwell PL, Storey BT.
Journal: Mol Reprod Dev (2000): 335
MRP2, a human conjugate export pump, is present and transports fluo 3 into apical vacuoles of Hep G2 cells
Authors: Cantz T, Nies AT, Brom M, Hofmann AF, Keppler D.
Journal: Am J Physiol Gastrointest Liver Physiol (2000): G522
Use of co-loaded Fluo-3 and Fura Red fluorescent indicators for studying the cytosolic Ca(2+)concentrations distribution in living plant tissue
Authors: Walczysko P, Wagner E, Albrechtova JT.
Journal: Cell Calcium (2000): 23
[Ca2+]i following extrasystoles in guinea-pig trabeculae microinjected with fluo-3 - a comparison with frog skeletal muscle fibres
Authors: Wohlfart B., undefined
Journal: Acta Physiol Scand (2000): 1
Determination of the intracellular dissociation constant, K(D), of the fluo-3. Ca(2+) complex in mouse sperm for use in estimating intracellular Ca(2+) concentrations
Authors: Rockwell PL, Storey BT.
Journal: Mol Reprod Dev (1999): 418