Actively helping customers, employees and the global community during the coronavirus SARS-CoV-2 outbreak.  Learn more >>

Calcein Orange™ sodium salt

Image of Live HeLa cells stained with Calcein Orange™ sodium salt (Cat#22008) and Calcein Orange™ diacetate (Cat#22009). Calcein Orange™ sodium salt cannot  permeate intact live cells
Image of Live HeLa cells stained with Calcein Orange™ sodium salt (Cat#22008) and Calcein Orange™ diacetate (Cat#22009). Calcein Orange™ sodium salt cannot  permeate intact live cells
Ordering information
Price ()
Catalog Number22008
Unit Size
Find Distributor
Additional ordering information
Telephone1-408-733-1055
Fax1-408-733-1304
Emailsales@aatbio.com
InternationalSee distributors
ShippingStandard overnight for United States, inquire for international
Physical properties
Molecular weight939.11
SolventDMSO
Spectral properties
Excitation (nm)531
Emission (nm)545
Storage, safety and handling
H-phraseH303, H313, H333
Hazard symbolXN
Intended useResearch Use Only (RUO)
R-phraseR20, R21, R22
StorageFreeze (< -15 °C); Minimize light exposure
UNSPSC12352200

OverviewpdfSDSpdfProtocol


Molecular weight
939.11
Excitation (nm)
531
Emission (nm)
545
Calcein AM is one of the most popular fluorescent probes used for labeling and monitoring cellular functions of live cells. However, the single color of Calcein AM makes it impossible to use this valuable reagent in the multicolor applications. For example, it is impossible to use Calcein AM in combination of GFP-tranfacted cells due to the same color to GFP. To address this color limitation of Calcein AM, we have developed Calcein Orange™, Calcein Red™ and Calcein Deep Red™. These new Calcein AM analogs enable the multicolor labeling and functional analysis of live cells in combination with Calcein AM. Non-fluorescent Calcein Orange™ diaceate can easily get into live cells and hydrolyzes to generate strongly fluorescent Calcein Orange™ dye. AAT Bioquest offers Calcein Orange™ as a reference dye to Calcein Orange™ diacetate.

Calculators


Common stock solution preparation

Table 1. Volume of DMSO needed to reconstitute specific mass of Calcein Orange™ sodium salt to given concentration. Note that volume is only for preparing stock solution. Refer to sample experimental protocol for appropriate experimental/physiological buffers.

0.1 mg0.5 mg1 mg5 mg10 mg
1 mM106.484 µL532.419 µL1.065 mL5.324 mL10.648 mL
5 mM21.297 µL106.484 µL212.968 µL1.065 mL2.13 mL
10 mM10.648 µL53.242 µL106.484 µL532.419 µL1.065 mL

Molarity calculator

Enter any two values (mass, volume, concentration) to calculate the third.

Mass (Calculate)Molecular weightVolume (Calculate)Concentration (Calculate)Moles
/=x=

Spectrum


Open in Advanced Spectrum Viewer
spectrum

Spectral properties

Excitation (nm)531
Emission (nm)545

Citations


View all 19 citations: Citation Explorer
NINJ2--A novel regulator of endothelial inflammation and activation
Authors: Wang, Jingjing and Fa, Jingjing and Wang, Pengyun and Jia, Xinzhen and Peng, Huixin and Chen, Jing and Wang, Yifan and Wang, Chenhui and Chen, Qiuyun and Tu, Xin and others,
Journal: Cellular signalling (2017): 231--241
Functional imaging of neuronal activity of auditory cortex by using Cal-520 in anesthetized and awake mice
Authors: Li, Jingcheng and Zhang, Jianxiong and Wang, Meng and Pan, Junxia and Chen, Xiaowei and Liao, Xiang
Journal: Biomedical Optics Express (2017): 2599--2610
NINJ2--A novel regulator of endothelial inflammation and activation
Authors: Wang, Jingjing and Fa, Jingjing and Wang, Pengyun and Jia, Xinzhen and Peng, Huixin and Chen, Jing and Wang, Yifan and Wang, Chenhui and Chen, Qiuyun and Tu, Xin and others, undefined
Journal: Cellular Signalling (2017)
Influence of hypothermia and subsequent rewarming upon leukocyte-endothelial interactions and expression of Junctional-Adhesion-Molecules A and B
Authors: Bogert, Nicolai V and Werner, Isabella and Kornberger, Angela and Meybohm, Patrick and Moritz, Anton and Keller, Till and Stock, Ulrich A and Beiras-Fern, undefined and ez, Andres
Journal: Scientific reports (2016)
Inhibition of ABC transport proteins by oil sands process affected water
Authors: Alharbi, Hattan A and Saunders, David MV and Al-Mousa, Ahmed and Alcorn, Jane and Pereira, Alberto S and Martin, Jonathan W and Giesy, John P and Wiseman, Steve B
Journal: Aquatic Toxicology (2016): 81--88
Rapid generation of collagen-based microtissues to study cell--matrix interactions
Authors: Brett, Marie-Elena and Crampton, Alex and ra L , undefined and Wood, David K
Journal: Technology (2016): 1--8
Toxicokinetics and toxicodynamics of chlorpyrifos is altered in embryos of Japanese medaka exposed to oil sands process-affected water: evidence for inhibition of P-glycoprotein
Authors: Alharbi, Hattan A and Alcorn, Jane and Al-Mousa, Ahmed and Giesy, John P and Wiseman, Steve B
Journal: Journal of Applied Toxicology (2016)
Flexible Endoscopic Spray Application of Respiratory Epithelial Cells as Platform Technology to Apply Cells in Tubular Organs
Authors: Thiebes, Anja Lena and Reddemann, Manuel Armin and Palmer, Johannes and Kneer, Reinhold and Jockenhoevel, Stefan and Cornelissen, Christian Gabriel
Journal: Tissue Engineering Part C: Methods (2016): 322--331
Erythropoietin Stimulates Endothelial Progenitor Cells to Induce Endothelialization in an Aneurysm Neck After Coil Embolization by Modulating Vascular Endothelial Growth Factor
Authors: Liu, Peixi and Zhou, Yingjie and An, Qingzhu and Song, Yaying and Chen, Xi and Yang, Guo-Yuan and Zhu, Wei
Journal: MEDICINE (2016): 1--8
Spraying respiratory epithelial cells to coat tissue-engineered constructs
Authors: Thiebes, Anja Lena and Albers, Stefanie and Klopsch, Christian and Jockenhoevel, Stefan and Cornelissen, Christian G
Journal: BioResearch open access (2015): 278--287

References


View all 84 references: Citation Explorer
Functional evidence that the self-renewal gene NANOG regulates esophageal squamous cancer development
Authors: Li, Deng and Xiang, Xiaocong and Yang, Fei and Xiao, Dongqin and Liu, Kang and Chen, Zhu and Zhang, Ruolan and Feng, Gang
Journal: Biochemical and Biophysical Research Communications (2017)
Localized functional chemical stimulation of TE 671 cells cultured on nanoporous membrane by calcein and acetylcholine
Authors: Zibek S, Stett A, Koltay P, Hu M, Zengerle R, Nisch W, Stelzle M.
Journal: Biophys J. (2006)
A vaccination and challenge model using calcein marked fish
Authors: Klesius PH, Evans JJ, Shoemaker CA, Pasnik DJ.
Journal: Fish Shellfish Immunol (2006): 20
Novel fluorescence assay using calcein-AM for the determination of human erythrocyte viability and aging
Authors: Bratosin D, Mitrofan L, Palii C, Estaquier J, Montreuil J.
Journal: Cytometry A (2005): 78
Cytotoxic effects of 100 reference compounds on Hep G2 and HeLa cells and of 60 compounds on ECC-1 and CHO cells. I mechanistic assays on ROS, glutathione depletion and calcein uptake
Authors: Schoonen WG, Westerink WM, de Roos JA, Debiton E.
Journal: Toxicol In Vitro (2005): 505
Calcein AM release-based cytotoxic cell assay for fish leucocytes
Authors: Iwanowicz LR, Densmore CL, Ottinger CA.
Journal: Fish Shellfish Immunol (2004): 127
Calcein-AM is a detector of intracellular oxidative activity
Authors: Uggeri J, Gatti R, Belletti S, Sc and roglio R, Corradini R, Rotoli BM, Orl and ini G., undefined
Journal: Histochem Cell Biol (2004): 499
Comparison of the usefulness of the MTT, ATP, and calcein assays to predict the potency of cytotoxic agents in various human cancer cell lines
Authors: Mueller H, Kassack MU, Wiese M.
Journal: J Biomol Screen (2004): 506
In vitro assay of mineralized-tissue formation on titanium using fluorescent staining with calcein blue
Authors: Goto T, Kajiwara H, Yoshinari M, Fukuhara E, Kobayashi S, Tanaka T.
Journal: Biomaterials (2003): 3885
The effects of calcium chloride and sodium chloride on the electroporation-mediated skin permeation of fluorescein isothiocyanate (FITC)-dextrans in vitro
Authors: Tokudome Y, Sugibayashi K.
Journal: Biol Pharm Bull (2003): 1508

Application notes


Annexin V