DCFH-DA [2',7'-Dichlorodihydrofluorescein diacetate] *CAS 4091-99-0*

Image Viewer
Chemical structure for DCFH-DA [2',7'-Dichlorodihydrofluorescein diacetate] *CAS 4091-99-0*
Roll over image to zoom in
Loading...
 
Unit Size: Cat No: Price (USD): Qty:
25 mg 15204 $75


Export item/cart as Excel file

Send item/cart as email
EXPORT TO EXCEL X

Export:
EXPORT TO EMAIL X
Important: We request your email address to ensure that the recipient(s) knows you intended for them to see the email, and that it is not junk mail.
Export:
Your Name*:
Your Email*:
Recipient Email*:
Your Personal Message:
Additional Ordering Information
Telephone: 1-800-990-8053
Fax: 1-408-733-1304
Email: sales@aatbio.com
International: See distributors





Overview

Ex/Em (nm)504/525
MW487.29
CAS #4091-99-0
SolventDMSO
Storage Freeze (<-15 °C)
Minimize light exposure
Category Enzyme Detection
Redox Enzymes
Related Cell Signaling Molecules
Reactive Oxygen Species
Secondary Reagents
DCFH-DA, 2',7'-Dichlorodihydrofluorescein diacetate (also called 2',7'-dichlorofluorescin diacetate), is hydrolyzed by cellular esterases to 2',7'-dichlorodihydrofluorescein (also called 2',7'-dichlorofluorescin) and is then oxidized to 2',7'-dichlorofluorescein primarily by H2O2. 2',7'-dichlorodihydrofluorescein diacetate might be reactive toward a broad range of oxidizing reactions that may be increased during intracellular oxidant stress. This probe is widely used to monitoring cellular redox processes.




Calculators
Common stock solution preparation

Table 1. Volume of DMSO needed to reconstitute specific mass of DCFH-DA [2',7'-Dichlorodihydrofluorescein diacetate] *CAS 4091-99-0* to given concentration. Note that volume is only for preparing stock solution. Refer to sample experimental protocol for appropriate experimental/physiological buffers.



Molarity calculator

Table 2. Enter any two values (mass, volume, concentration) to calculate the third.

Mass Molecular weight Volume Concentration Moles
/ = x =
 






Spectrum Advanced Spectrum Viewer

Sorry, your browser does not support inline SVG. Relative Intensity (%) 100 80 60 40 20 0 Sorry, your browser does not support inline SVG.
Sorry, your browser does not support inline SVG. Sorry, your browser does not support inline SVG.
Move mouse over grid to display wavelength & intensity values.

300
400
500
600
700
800
900
Wavelength (nm)





Protocol


Quick Preview

This protocol only provides a guideline, and should be modified according to your specific needs.
Key parameters
Instrument:Fluorescence microscope
Excitation:FITC filter set
Emission:FITC filter set
Recommended plate:Black wall/clear bottom
Instrument specification(s):FITC filter set
Preparation of stock solution
Unless otherwise noted, all unused stock solutions should be divided into single-use aliquots and stored at -20 °C after preparation. Avoid repeated freeze-thaw cycles.

2',7'-Dichlorodihydrofluorescein diacetate stock solution:
Make working solution in the concentration range of 1-10 mM in DMSO. Note: The unused DMSO stock solution should be aliquoted into a single use vial and stored at -20 °C. Keep from light.

Preparation of working solution

2',7'-Dichlorodihydrofluorescein diacetate working solution:
Make working solution in the concentration range of 1-10 µM in a physiological buffer such as PBS, HBSS, HEPES buffers. Note: The optimal working concentration for your application must be empirically determined.

Sample experimental protocol

The following procedures provide a general guideline and should be modified for your particular application.

  1. Remove cells from growth media, add the dye working solution to the cells, and incubate the cells at room temperature or 37oC for 5 to 60 minutes.

  2. Remove the dye working solution; wash with pre-warmed HBSS, and add pre-warmed HBSS or growth medium and incubate at the optimal temperature. The optimal recovery time can vary widely, as some cell types normally exhibit low levels of esterase activity.

  3. Determine the baseline fluorescence intensity of a sample of the loaded cells prior to exposing the cells to experimental inducements. 6. Negative controls should be assessed as follows:

  4. Examine unstained cells for autofluorescence in the green emission range.

  5. For flow cytometry, ascertain that the forward and side scatter of cells is unchanged after dye-loading and treatment. Changes in cell dimensions may be related to blebbing or shrinkage resulting from handling or a toxic response.

  6. Examine the fluorescence of cell-free mixtures of dye and buffer/media with and without the inducer. In the absence of extracellular esterases and other oxidative enzymes, the gradual increase in fluorescence over time may be related to spontaneous hydrolysis, atmospheric oxidation, and/or light-induced oxidation.

  7. Examine the fluorescence of untreated (control) loaded cells that have been maintained in growth medium or simple buffer. In healthy cells, oxygen radicals are eliminated by cellular enzymes and/or natural antioxidants. Following the dye-loading recovery period, healthy cells should exhibit a low level of fluorescence that is relatively stable for the duration of the experiment; however, a gradual increase (due to auto-oxidation) or decrease (due to loss of dye from cells or photobleaching) in fluorescence may be observed. In the absence of any stimulus or inducement, a burst of fluorescence in healthy, untreated cells could indicate progress to cell death or some other oxidative event.

  8. Positive controls may be stimulated with H2O2 or tert-butyl hydroperoxide (TBHP) to a final concentration of ~100 µM (increase or decrease dose based on the sensitivity and response of the cells).
Example data analysis and figures

Figure 1. Chemical structure for DCFH-DA [2',7'-Dichlorodihydrofluorescein diacetate] *CAS 4091-99-0*
Disclaimer
AAT Bioquest provides high-quality reagents and materials for research use only. For proper handling of potentially hazardous chemicals, please consult the Safety Data Sheet (SDS) provided for the product. Chemical analysis and/or reverse engineering of any kit or its components is strictly prohibited without written permission from AAT Bioquest. Please call 408-733-1055 or email info@aatbio.com if you have any questions.





References

Kinetic analysis of fluorescein and dihydrofluorescein effluxes in tumour cells expressing the multidrug resistance protein, MRP1
Authors: Saengkhae C, Loetchutinat C, Garnier-Suillerot A.
Journal: Biochem Pharmacol (2003): 969

Mitochondrial localization of reactive oxygen species by dihydrofluorescein probes
Authors: Diaz G, Liu S, Isola R, Diana A, Falchi AM.
Journal: Histochem Cell Biol (2003): 319

Dihydrofluorescein diacetate is superior for detecting intracellular oxidants: comparison with 2',7'-dichlorodihydrofluorescein diacetate, 5(and 6)-carboxy-2',7'-dichlorodihydrofluorescein diacetate, and dihydrorhodamine 123
Authors: Hempel SL, Buettner GR, O'Malley YQ, Wessels DA, Flaherty DM.
Journal: Free Radic Biol Med (1999): 146

A rapid diagnostic test for the viability of early cattle and rabbit embryos using diacetyl-fluorescin
Authors: Schilling E, Dopke HH.
Journal: Naturwissenschaften (1978): 658

Determination of fluorescin sodium in ophthalmic solutions
Authors: Robertson EJ, Patel JA.
Journal: Am J Hosp Pharm (1968): 598

[Experimental research on insulin antibodies. II. Immunochemical characterization of guinea pig anti-ox insulin serum conjugated with fluorescin isothiocyanate.]
Authors: Mancini AM, Zampa GA, Costanzi G.
Journal: Boll Soc Ital Biol Sper (1961): 1230

[Experimental research on insulin antibodies. III. Immunohistology of the endocrine pancreas with guinea pig anti-bovine insulin serum, conjugated with fluorescin isothiocyanate.]
Authors: Costanzi G, Mancini UM, Zampa GA.
Journal: Boll Soc Ital Biol Sper (1961): 1233

Two simple media for the demonstration of pyocyanin and fluorescin
Authors: King EO, Ward MK, Raney DE.
Journal: J Lab Clin Med (1954): 301

Influence of the concentration of iron on the production of fluorescin by Pseudomonas aeruginosa
Authors: Totter JR, Moseley FT.
Journal: J Bacteriol (1953): 45

Transfer of fluorescin from Ps. pyocyanea to colonies of other bacteria
Authors: Hurst L, Lowbury EJ.
Journal: J Clin Pathol (1952): 359


View More Citations