logo
AAT Bioquest

FastClick™ Cy5 Azide

Product Image
Product Image
Gallery Image 1
The reaction (Green Bar) of FastClick Cy5 Azide with coumarin alkyne occurs under extremely mild conditions (e.g., [Azide] = 0.02 mM, [Alkyne] = 0.02 mM, [CuSO4] = 0.02 mM, [Sodium Ascorbate] = 5 mM, in 100 mM HEPES) under which the common Cy5 azide does not effectively react with the coumarin alkyne substrate.
Ordering information
Price
Catalog Number
Unit Size
Quantity
Add to cart
Additional ordering information
Telephone1-800-990-8053
Fax1-800-609-2943
Emailsales@aatbio.com
InternationalSee distributors
Bulk requestInquire
Custom sizeInquire
ShippingStandard overnight for United States, inquire for international
Request quotation
Physical properties
Molecular weight869.07
SolventDMSO
Spectral properties
Correction Factor (260 nm)0.02
Correction Factor (280 nm)0.03
Correction Factor (482 nm)0.009
Correction Factor (565 nm)0.09
Extinction coefficient (cm -1 M -1)2500001
Excitation (nm)651
Emission (nm)670
Quantum yield0.271, 0.42
Storage, safety and handling
H-phraseH303, H313, H333
Hazard symbolXN
Intended useResearch Use Only (RUO)
R-phraseR20, R21, R22
StorageFreeze (< -15 °C); Minimize light exposure
Alternative formats
FastClick™ Cy5 Alkyne

OverviewpdfSDSpdfProtocol


See also: Click Chemistry
Molecular weight
869.07
Correction Factor (260 nm)
0.02
Correction Factor (280 nm)
0.03
Correction Factor (482 nm)
0.009
Correction Factor (565 nm)
0.09
Extinction coefficient (cm -1 M -1)
2500001
Excitation (nm)
651
Emission (nm)
670
Quantum yield
0.271, 0.42
FastClick™ Cy5 Azide contains both the CAG moiety of FastClick (for assisting click efficiency) and Cy5 fluorophore (as the fluorescence tag) for developing Cy5-based fluorescent probes. Cy5 is one of the most widely used red fluorophores. It has the identical fluorescence spectra to Alexa Fluor 647. FastClick™ reagents have been developed by the scientists of AAT Bioquest for enhancing the yield and reaction speed of copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. They contain a copper-chelating ligand that significantly stabilizes the Cu(I) oxidation state and thus accelerates the click reaction. They do not require the use of an external copper-chelator (such as the common THPTA or BTTAA). The high concentration of copper chelators is known to have a detrimental effect on DNA/RNA, thus causing biocompatibility issues. The introduction of a copper-chelating moiety at the reporter molecule allows for a dramatic raise of the effective Cu(I) concentration at the reaction site and thus accelerates the reaction. Under extremely mild conditions the FastClick™ azides and alkynes react much faster in high yield compared to the corresponding conventional CuAAC reactions. Click chemistry was developed by K. Barry Sharpless as a robust and specific method of ligating two molecules together. Two important characteristics make click chemistry attractive for assembling biomolecules. First, click reactions are bio-orthogonal, thus the click chemistry-functionalized biomolecules would not react with the natural biomolecules that lack a clickable functional group. Second, the reactions proceed with ease under mild conditions, such as at room temperature and in aqueous media.

Calculators


Common stock solution preparation

Table 1. Volume of DMSO needed to reconstitute specific mass of FastClick™ Cy5 Azide to given concentration. Note that volume is only for preparing stock solution. Refer to sample experimental protocol for appropriate experimental/physiological buffers.

0.1 mg0.5 mg1 mg5 mg10 mg
1 mM115.066 µL575.328 µL1.151 mL5.753 mL11.507 mL
5 mM23.013 µL115.066 µL230.131 µL1.151 mL2.301 mL
10 mM11.507 µL57.533 µL115.066 µL575.328 µL1.151 mL

Molarity calculator

Enter any two values (mass, volume, concentration) to calculate the third.

Mass (Calculate)Molecular weightVolume (Calculate)Concentration (Calculate)Moles
/=x=

Spectrum


Open in Advanced Spectrum Viewer
spectrum

Spectral properties

Correction Factor (260 nm)0.02
Correction Factor (280 nm)0.03
Correction Factor (482 nm)0.009
Correction Factor (565 nm)0.09
Extinction coefficient (cm -1 M -1)2500001
Excitation (nm)651
Emission (nm)670
Quantum yield0.271, 0.42

Product Family


NameExcitation (nm)Emission (nm)Extinction coefficient (cm -1 M -1)Quantum yieldCorrection Factor (260 nm)Correction Factor (280 nm)
FastClick™ Cy3 Azide55556915000010.1510.070.073
FastClick™ Cy7 Azide7567792500000.30.050.036
FastClick™ XFD350 Azide34344119000-0.250.19
FastClick™ XFD488 Azide499520710000.9210.300.11
FastClick™ XFD555 Azide5535681500000.110.080.08
FastClick™ XFD647 Azide6506712390000.3310.000.03
FastClick™ XFD750 Azide7527762400000.1210.000.04

Images


References


View all 2 references: Citation Explorer
Development of a general methodology for labelling peptide-morpholino oligonucleotide conjugates using alkyne-azide click chemistry.
Authors: Shabanpoor, Fazel and Gait, Michael J
Journal: Chemical communications (Cambridge, England) (2013): 10260-2
Two-strain, cell-selective protein labeling in mixed bacterial cultures.
Authors: Truong, Frank and Yoo, Tae Hyeon and Lampo, Thomas J and Tirrell, David A
Journal: Journal of the American Chemical Society (2012): 8551-6