logo
AAT Bioquest

FastClick™ XFD647 Alkyne

The reaction (Green Bar) of FastClick Cy5 Alkyne with coumarin azide occurs under extremely mild conditions (e.g., [Azide] = 0.02 mM, [Alkyne] = 0.02 mM, [CuSO4] = 0.02 mM, [Sodium Ascorbate] = 5 mM, in 100 mM HEPES) under which the common Cy5 alkyne does not effectively react with the coumarin azide substrate.
The reaction (Green Bar) of FastClick Cy5 Alkyne with coumarin azide occurs under extremely mild conditions (e.g., [Azide] = 0.02 mM, [Alkyne] = 0.02 mM, [CuSO4] = 0.02 mM, [Sodium Ascorbate] = 5 mM, in 100 mM HEPES) under which the common Cy5 alkyne does not effectively react with the coumarin azide substrate.
The reaction (Green Bar) of FastClick Cy5 Alkyne with coumarin azide occurs under extremely mild conditions (e.g., [Azide] = 0.02 mM, [Alkyne] = 0.02 mM, [CuSO4] = 0.02 mM, [Sodium Ascorbate] = 5 mM, in 100 mM HEPES) under which the common Cy5 alkyne does not effectively react with the coumarin azide substrate.
Gallery Image 2
Ordering information
Price
Catalog Number
Unit Size
Quantity
Add to cart
Additional ordering information
Telephone1-800-990-8053
Fax1-800-609-2943
Emailsales@aatbio.com
InternationalSee distributors
Bulk requestInquire
Custom sizeInquire
ShippingStandard overnight for United States, inquire for international
Request quotation
Physical properties
Molecular weight1281.46
SolventDMSO
Spectral properties
Correction Factor (260 nm)0.00
Correction Factor (280 nm)0.03
Extinction coefficient (cm -1 M -1)239000
Excitation (nm)650
Emission (nm)671
Quantum yield0.331
Storage, safety and handling
H-phraseH303, H313, H333
Hazard symbolXN
Intended useResearch Use Only (RUO)
R-phraseR20, R21, R22
StorageFreeze (< -15 °C); Minimize light exposure
Alternative formats
FastClick™ XFD647 Azide

OverviewpdfSDSpdfProtocol


See also: Click Chemistry
Molecular weight
1281.46
Correction Factor (260 nm)
0.00
Correction Factor (280 nm)
0.03
Extinction coefficient (cm -1 M -1)
239000
Excitation (nm)
650
Emission (nm)
671
Quantum yield
0.331
FastClick™ XFD647 Alkyne contains both the CAG moiety of FastClick (for assisting click efficiency) and Alexa Fluor® 647 fluorophore (as the fluorescence tag) for developing Alexa Fluor® 647-based fluorescent probes. It readily reacts with an azido-containing biomolecule under extremely mild conditions. Alexa Fluor® 647 is a commonly used deep red fluorophore for labeling proteins, nucleic acids, or other biomolecules. It has moderate photostability and excitation that matches the common 647 nm laser line that is equipped with almost all the major new fluorescence instruments. Its conjugates are widely used for imaging and flow cytometry applications in combination with the widely available Cy5 filter set. It is a water-soluble Cy5 derivative that has pH-insensitive fluorescence from pH 4 to pH 10. Alexa Fluor® is a trademark of ThermoFisher Scientific. FastClick™ reagents have been developed by the scientists of AAT Bioquest for enhancing the yield and reaction speed of copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. They contain a copper-chelating ligand that significantly stabilizes the Cu(I) oxidation state and thus accelerates the click reaction. They do not require the use of an external copper-chelator (such as the common THPTA or BTTAA). The high concentration of copper chelators is known to have a detrimental effect on DNA/RNA, thus causing biocompatibility issues. The introduction of a copper-chelating moiety at the reporter molecule allows for a dramatic raise of the effective Cu(I) concentration at the reaction site and thus accelerates the reaction. Under extremely mild conditions the FastClick™ azides and alkynes react much faster in high yield compared to the corresponding conventional CuAAC reactions. Click chemistry was developed by K. Barry Sharpless as a robust and specific method of ligating two molecules together. Two important characteristics make click chemistry attractive for assembling biomolecules. First, click reactions are bio-orthogonal, thus the click chemistry-functionalized biomolecules would not react with the natural biomolecules that lack a clickable functional group. Second, the reactions proceed with ease under mild conditions, such as at room temperature and in aqueous media.

Calculators


Common stock solution preparation

Table 1. Volume of DMSO needed to reconstitute specific mass of FastClick™ XFD647 Alkyne to given concentration. Note that volume is only for preparing stock solution. Refer to sample experimental protocol for appropriate experimental/physiological buffers.

0.1 mg0.5 mg1 mg5 mg10 mg
1 mM78.036 µL390.18 µL780.36 µL3.902 mL7.804 mL
5 mM15.607 µL78.036 µL156.072 µL780.36 µL1.561 mL
10 mM7.804 µL39.018 µL78.036 µL390.18 µL780.36 µL

Molarity calculator

Enter any two values (mass, volume, concentration) to calculate the third.

Mass (Calculate)Molecular weightVolume (Calculate)Concentration (Calculate)Moles
/=x=

Spectrum


Open in Advanced Spectrum Viewer
spectrum

Spectral properties

Correction Factor (260 nm)0.00
Correction Factor (280 nm)0.03
Extinction coefficient (cm -1 M -1)239000
Excitation (nm)650
Emission (nm)671
Quantum yield0.331

Product Family


NameExcitation (nm)Emission (nm)Extinction coefficient (cm -1 M -1)Quantum yieldCorrection Factor (260 nm)Correction Factor (280 nm)
FastClick™ Cy3 Alkyne55556915000010.1510.070.073
FastClick™ Cy5 Alkyne65167025000010.271, 0.420.020.03
FastClick™ Cy7 Alkyne7567792500000.30.050.036
FastClick™ XFD350 Alkyne34344119000-0.250.19
FastClick™ XFD488 Alkyne499520710000.9210.300.11
FastClick™ XFD555 Alkyne5535681500000.110.080.08
FastClick™ XFD750 Alkyne7527762400000.1210.000.04

Images


References


View all 31 references: Citation Explorer
Abortive ligation intermediate blocks seamless repair of double-stranded breaks.
Authors: Li, Xuegang and Jin, Jiacheng and Xu, Wenxuan and Wang, Mingdao and Liu, Liangwei
Journal: International journal of biological macromolecules (2022): 1498-1503
On-site rapid and simultaneous detection of acetamiprid and fipronil using a dual-fluorescence lab-on-fiber biosensor.
Authors: Song, Dan and Liu, Jiayao and Xu, Wenjuan and Han, Xiangzhi and Wang, Hongliang and Zhuo, Yuxin and Li, Chunsheng and Long, Feng
Journal: Mikrochimica acta (2022): 234
Mechanism of Cyanine5 to Cyanine3 Photoconversion and Its Application for High-Density Single-Particle Tracking in a Living Cell.
Authors: Cho, Yoonjung and An, Hyeong Jeon and Kim, Taehoon and Lee, Chulbom and Lee, Nam Ki
Journal: Journal of the American Chemical Society (2021): 14125-14135
Molecular and Spectroscopic Characterization of Green and Red Cyanine Fluorophores from the Alexa Fluor and AF Series*.
Authors: Gebhardt, Christian and Lehmann, Martin and Reif, Maria M and Zacharias, Martin and Gemmecker, Gerd and Cordes, Thorben
Journal: Chemphyschem : a European journal of chemical physics and physical chemistry (2021)
Restricted intramolecular rotation of fluorescent molecular rotors at the periphery of aqueous microdroplets in oil.
Authors: Kang, Jooyoun and Lhee, SangMoon and Lee, Jae Kyoo and Zare, Richard N and Nam, Hong Gil
Journal: Scientific reports (2020): 16859
Development of sesbania mosaic virus nanoparticles for imaging.
Authors: Vishnu Vardhan, G P and Hema, M and Sushmitha, C and Savithri, H S and Natraj, Usha and Murthy, M R N
Journal: Archives of virology (2019): 497-507
PET imaging of EGFR expression using an 18F-labeled RNA aptamer.
Authors: Cheng, Siyuan and Jacobson, Orit and Zhu, Guizhi and Chen, Zhen and Liang, Steve H and Tian, Rui and Yang, Zhen and Niu, Gang and Zhu, Xiaohua and Chen, Xiaoyuan
Journal: European journal of nuclear medicine and molecular imaging (2019): 948-956
Deciphering Design Principles of Förster Resonance Energy Transfer-Based Protease Substrates: Thermolysin-Like Protease from Geobacillus stearothermophilus as a Test Case.
Authors: Ripp, Sophie and Turunen, Petri and Minot, Ethan D and Rowan, Alan E and Blank, Kerstin G
Journal: ACS omega (2018): 4148-4156
Targetability of hyaluronic acid nanogel to cancer cells: In vitro and in vivo studies.
Authors: Pedrosa, S S and Pereira, P and Correia, A and Gama, F M
Journal: European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences (2017): 102-113
Improvement of the Mutation-Discrimination Threshold for Rare Point Mutations by a Separation-Free Ligase Detection Reaction Assay Based on Fluorescence Resonance Energy Transfer.
Authors: Hagihara, Kenta and Tsukagoshi, Kazuhiko and Nakajima, Chinami and Esaki, Shinsuke and Hashimoto, Masahiko
Journal: Analytical sciences : the international journal of the Japan Society for Analytical Chemistry (2016): 367-70