logo
AAT Bioquest

ICG acid

Product Image
Product Image
Gallery Image 1
Ordering information
Price
Catalog Number
Unit Size
Quantity
Add to cart
Additional ordering information
Telephone1-800-990-8053
Fax1-800-609-2943
Emailsales@aatbio.com
InternationalSee distributors
Bulk requestInquire
Custom sizeInquire
ShippingStandard overnight for United States, inquire for international
Request quotation
Physical properties
Molecular weight844.98
SolventDMSO
Spectral properties
Correction Factor (280 nm)0.076
Extinction coefficient (cm -1 M -1)230000
Excitation (nm)789
Emission (nm)813
Storage, safety and handling
H-phraseH303, H313, H333
Hazard symbolXN
Intended useResearch Use Only (RUO)
R-phraseR20, R21, R22
StorageFreeze (< -15 °C); Minimize light exposure
UNSPSC12171501
Direct upgrades
iFluor® 790 acid

OverviewpdfSDSpdfProtocol


Molecular weight
844.98
Correction Factor (280 nm)
0.076
Extinction coefficient (cm -1 M -1)
230000
Excitation (nm)
789
Emission (nm)
813
Indocyanine green (ICG) is a cyanine dye used in medical diagnostics. It is used for determining cardiac output, hepatic function, and liver blood flow, and for ophthalmic angiography. It has a peak spectral absorption close to 800 nm. These infrared frequencies penetrate retinal layers, allowing ICG angiography to image deeper patterns of circulation than fluorescein angiography. This ICG acid can be used to modify the molecules that contain an amino group.

Calculators


Common stock solution preparation

Table 1. Volume of DMSO needed to reconstitute specific mass of ICG acid to given concentration. Note that volume is only for preparing stock solution. Refer to sample experimental protocol for appropriate experimental/physiological buffers.

0.1 mg0.5 mg1 mg5 mg10 mg
1 mM118.346 µL591.73 µL1.183 mL5.917 mL11.835 mL
5 mM23.669 µL118.346 µL236.692 µL1.183 mL2.367 mL
10 mM11.835 µL59.173 µL118.346 µL591.73 µL1.183 mL

Molarity calculator

Enter any two values (mass, volume, concentration) to calculate the third.

Mass (Calculate)Molecular weightVolume (Calculate)Concentration (Calculate)Moles
/=x=

Spectrum


Open in Advanced Spectrum Viewer
spectrum

Spectral properties

Correction Factor (280 nm)0.076
Extinction coefficient (cm -1 M -1)230000
Excitation (nm)789
Emission (nm)813

Product Family


NameExcitation (nm)Emission (nm)Extinction coefficient (cm -1 M -1)Quantum yieldCorrection Factor (280 nm)
ICG-ATT [3-ICG-acyl-1,3-thiazolidine-2-thione]789813230000-0.076
ICG-OSu789813230000-0.076
Cy3NS acid *CAS 1032678-01-5*55556915000010.1510.073
Cy5NS acid65167025000010.271, 0.420.03
Cy7NS acid7567792500000.30.036
AMCA acid *CAS#: 106562-32-7*34643419000-0.153
EDANS acid [5-((2-Aminoethyl)amino)naphthalene-1-sulfonic acid] *CAS 50402-56-7*3364555900-0.107
EDANS acid [5-((2-Aminoethyl)amino)naphthalene-1-sulfonic acid]3364555900-0.107
DABCYL acid [4-((4-(Dimethylamino)phenyl)azo)benzoic acid] *CAS 6268-49-1*----0.516
BCECF acid *CAS#: 85138-49-4*50452790000--
XFD532 acid *Same Structure to Alexa Fluor™ 532 acid*534553810000.6110.09
XFD488 acid *Same Structure to Alexa Fluor™ 488 acid*499520710000.9210.11
Cy3B acid56057112000010.5810.069
XFD350 acid *Same Structure to Alexa Fluor™ 350 acid*34344119000-0.19
XFD546 acid *Same Structure to Alexa Fluor™ 546 acid*5615721120000.7910.12
XFD568 acid *Same Structure to Alexa Fluor™ 568 acid*579603913000.6910.46
XFD514 acid51854380000-0.18
QXY7 acid [equivalent to QSY-7 acid]--900001-0.22
XFD555 acid5535681550000.110.08
XFD647 acid6506712700000.3310.03
XFD750 acid7527762900000.1210.04
XFD700 acid6967192050000.2510.07
ICG-Osu *UltraPure Grade*789813230000-0.076
OG514 acid [equivalent to Oregon Green® 514 carboxylic acid]51353385000-0.19
Show More (15)

Images


Citations


View all 5 citations: Citation Explorer
Comparison of Near-Infrared Imaging Agents Targeting the PTPmu Tumor Biomarker
Authors: Johansen, Mette L and Vincent, Jason and Rose, Marissa and Sloan, Andrew E and Brady-Kalnay, Susann M
Journal: Molecular Imaging and Biology (2023): 1--14
Assessment of Lexiscan for Blood Brain Barrier disruption to facilitate Fluorescence brain imaging
Authors: Pak, Rebecca W and Le, Hanh and Valentine, Heather and Thorek, Daniel and Rahmim, Arman and Wong, Dean and Kang, Jin U
Journal: (2017): ATu3B--2
Bioengineering of injectable encapsulated aggregates of pluripotent stem cells for therapy of myocardial infarction
Authors: Zhao, Shuting and Xu, Zhaobin and Wang, Hai and Reese, Benjamin E and Gushchina, Liubov V and Jiang, Meng and Agarwal, Pranay and Xu, Jiangsheng and Zhang, Mingjun and Shen, Rulong and others, undefined
Journal: Nature Communications (2016): 13306
Single-Layer MoS2 Nanosheets with Amplified Photoacoustic Effect for Highly Sensitive Photoacoustic Imaging of Orthotopic Brain Tumors
Authors: Chen, Jingqin and Liu, Chengbo and Hu, Dehong and Wang, Feng and Wu, Haiwei and Gong, Xiaojing and Liu, Xin and Song, Liang and Sheng, Zonghai and Zheng, Hairong
Journal: Advanced Functional Materials (2016)
Deep Photoacoustic/Luminescence/Magnetic Resonance Multimodal Imaging in Living Subjects Using High-Efficiency Upconversion Nanocomposites
Authors: Liu, Yu and Kang, Ning and Lv, Jing and Zhou, Zijian and Zhao, Qingliang and Ma, Lingceng and Chen, Zhong and Ren, Lei and Nie, Liming
Journal: Advanced Materials (2016)

References


View all 193 references: Citation Explorer
Ultrastaging of colon cancer by sentinel node biopsy using fluorescence navigation with indocyanine green
Authors: Hirche C, Mohr Z, Kneif S, Doniga S, Murawa D, Strik M, Hunerbein M.
Journal: Int J Colorectal Dis (2012): 319
Sentinel lymph node biopsy using real-time fluorescence navigation with indocyanine green in cutaneous head and neck/lip mucosa melanomas
Authors: Hayashi T, Furukawa H, Oyama A, Funayama E, Saito A, Yamao T, Yamamoto Y.
Journal: Head Neck (2012): 758
Efficacy of indocyanine green videography and real-time evaluation by FLOW 800 in the resection of a spinal cord hemangioblastoma in a child
Authors: Ueba T, Abe H, Matsumoto J, Higashi T, Inoue T.
Journal: J Neurosurg Pediatr (2012): 428
Concentration of indocyanine green does not significantly influence lymphatic function as assessed by near-infrared imaging
Authors: Aldrich MB, Davies-Venn C, Angermiller B, Robinson H, Chan W, Kwon S, Sevick-Muraca EM.
Journal: Lymphat Res Biol (2012): 20
Comparative Study of the Optical and Heat Generation Properties of IR820 and Indocyanine Green
Authors: Fern, undefined and ez-Fern, undefined and ez A, Manch and a R, Lei T, Carvajal DA, Tang Y, Zahid Raza Kazmi S, McGoron AJ.
Journal: Mol Imaging (2012): 99
Sentinel lymph node biopsy using a new indocyanine green fluorescence imaging system with a colour charged couple device camera for oral cancer
Authors: Iwai T, Maegawa J, Hirota M, Tohnai I.
Journal: Br J Oral Maxillofac Surg. (2012)
Usefulness of indocyanine green angiography to depict the distant retinal vascular anomalies associated with branch retinal vein occlusion causing serous macular detachment
Authors: Ueda T, Gomi F, Suzuki M, Sakaguchi H, Sawa M, Kamei M, Nishida K.
Journal: Retina (2012): 308
Application of indocyanine green videoangiography in surgery for spinal vascular malformations
Authors: Misra BK, Pur and are HR., undefined
Journal: J Clin Neurosci. (2012)
Indocyanine-Green Angiography Findings in Susac's Syndrome
Authors: Balaskas K, Guex-Crosier Y, Borruat FX.
Journal: Klin Monbl Augenheilkd (2012): 426
Gold nanomaterials conjugated with indocyanine green for dual-modality photodynamic and photothermal therapy
Authors: Kuo WS, Chang YT, Cho KC, Chiu KC, Lien CH, Yeh CS, Chen SJ.
Journal: Biomaterials (2012): 3270