ICG alkyne
Indocyanine green (ICG) is a tricarbocyanine-type dye with NIR-absorbing properties (peak absorption around 780 nm) and emission maximum at ~800 nm. This dye is also called Cardio Green and a few other less common trade names. The non-invasive near-infrared (NIR) fluorescence imaging dye ICG is approved by the FDA for ophthalmologic angiography to determine cardiac output and liver blood flow and function. Since infrared frequencies penetrate retinal layers, allowing ICG angiography to image deeper patterns of circulation than fluorescein angiography. ICG binds tightly to plasma proteins and becomes confined to the vascular system. ICG has a half-life of 150 to 180 seconds and is removed from circulation exclusively by the liver to bile juice. A recent study indicated ICG targets atheromas within 20 min of injection and provides sufficient signal enhancement for in vivo detection of lipid-rich, inflamed, coronary-sized plaques in atherosclerotic rabbits. Ex vivo fluorescence reflectance imaging showed high plaque target-to-background ratios in atheroma-bearing rabbits injected with ICG compared to atheroma-bearing rabbits injected with saline. It is also used in other medical diagnostics and cancer patients for the detection of solid tumors, localization of lymphnodes, and for angiography during reconstructive surgery, visualization of retinal and choroidal vasculature, and photodynamic therapy. In cancer diagnostics and therapeutics, ICG could be used as both an imaging dye and a hyperthermia agent. Little absorption in the visible range accounts for the low autofluorescence, tissue absorbance, and scattering at NIR wavelengths (700-900 nm). This ICG alkyne can be used to label azido (azide)-tagged biomolecules (like proteins, lipids, nucleic acids, sugars) chemoselectively via the well known click-chemistry.
Calculators
Common stock solution preparation
Table 1. Volume of DMSO needed to reconstitute specific mass of ICG alkyne to given concentration. Note that volume is only for preparing stock solution. Refer to sample experimental protocol for appropriate experimental/physiological buffers.
0.1 mg | 0.5 mg | 1 mg | 5 mg | 10 mg | |
1 mM | 130.203 µL | 651.016 µL | 1.302 mL | 6.51 mL | 13.02 mL |
5 mM | 26.041 µL | 130.203 µL | 260.406 µL | 1.302 mL | 2.604 mL |
10 mM | 13.02 µL | 65.102 µL | 130.203 µL | 651.016 µL | 1.302 mL |
Molarity calculator
Enter any two values (mass, volume, concentration) to calculate the third.
Mass (Calculate) | Molecular weight | Volume (Calculate) | Concentration (Calculate) | Moles | ||||
/ | = | x | = |
Spectrum
Open in Advanced Spectrum Viewer
Product family
Name | Excitation (nm) | Emission (nm) | Extinction coefficient (cm -1 M -1) | Correction Factor (280 nm) |
ICG-ATT [3-ICG-acyl-1,3-thiazolidine-2-thione] | 789 | 813 | 230000 | 0.076 |
ICG-OSu | 789 | 813 | 230000 | 0.076 |
AMCA Alkyne | 346 | 434 | 19000 | 0.153 |
XFD488 alkyne *Same Structure to Alexa Fluor™ 488 alkyne* | 499 | 520 | 71000 | 0.11 |
Cy3B alkyne | 560 | 571 | 1200001 | 0.069 |
XFD647 Alkyne | 650 | 671 | 270000 | 0.03 |
ICG-Osu *UltraPure Grade* | 789 | 813 | 230000 | 0.076 |
XFD350 alkyne | 343 | 441 | 19000 | 0.19 |
XFD405 alkyne | 401 | 421 | 35,000 | 0.70 |
Show More (7) |
Citations
View all 4 citations: Citation Explorer
Assessment of Lexiscan for Blood Brain Barrier disruption to facilitate Fluorescence brain imaging
Authors: Pak, Rebecca W and Le, Hanh and Valentine, Heather and Thorek, Daniel and Rahmim, Arman and Wong, Dean and Kang, Jin U
Journal: (2017): ATu3B--2
Authors: Pak, Rebecca W and Le, Hanh and Valentine, Heather and Thorek, Daniel and Rahmim, Arman and Wong, Dean and Kang, Jin U
Journal: (2017): ATu3B--2
Bioengineering of injectable encapsulated aggregates of pluripotent stem cells for therapy of myocardial infarction
Authors: Zhao, Shuting and Xu, Zhaobin and Wang, Hai and Reese, Benjamin E and Gushchina, Liubov V and Jiang, Meng and Agarwal, Pranay and Xu, Jiangsheng and Zhang, Mingjun and Shen, Rulong and others, undefined
Journal: Nature Communications (2016): 13306
Authors: Zhao, Shuting and Xu, Zhaobin and Wang, Hai and Reese, Benjamin E and Gushchina, Liubov V and Jiang, Meng and Agarwal, Pranay and Xu, Jiangsheng and Zhang, Mingjun and Shen, Rulong and others, undefined
Journal: Nature Communications (2016): 13306
Single-Layer MoS2 Nanosheets with Amplified Photoacoustic Effect for Highly Sensitive Photoacoustic Imaging of Orthotopic Brain Tumors
Authors: Chen, Jingqin and Liu, Chengbo and Hu, Dehong and Wang, Feng and Wu, Haiwei and Gong, Xiaojing and Liu, Xin and Song, Liang and Sheng, Zonghai and Zheng, Hairong
Journal: Advanced Functional Materials (2016)
Authors: Chen, Jingqin and Liu, Chengbo and Hu, Dehong and Wang, Feng and Wu, Haiwei and Gong, Xiaojing and Liu, Xin and Song, Liang and Sheng, Zonghai and Zheng, Hairong
Journal: Advanced Functional Materials (2016)
Deep Photoacoustic/Luminescence/Magnetic Resonance Multimodal Imaging in Living Subjects Using High-Efficiency Upconversion Nanocomposites
Authors: Liu, Yu and Kang, Ning and Lv, Jing and Zhou, Zijian and Zhao, Qingliang and Ma, Lingceng and Chen, Zhong and Ren, Lei and Nie, Liming
Journal: Advanced Materials (2016)
Authors: Liu, Yu and Kang, Ning and Lv, Jing and Zhou, Zijian and Zhao, Qingliang and Ma, Lingceng and Chen, Zhong and Ren, Lei and Nie, Liming
Journal: Advanced Materials (2016)
References
View all 193 references: Citation Explorer
Sentinel lymph node biopsy using intraoperative indocyanine green fluorescence imaging navigated with preoperative CT lymphography for superficial esophageal cancer
Authors: Yuasa Y, Seike J, Yoshida T, Takechi H, Yamai H, Yamamoto Y, Furukita Y, Goto M, Minato T, Nishino T, Inoue S, Fujiwara S, Tangoku A.
Journal: Ann Surg Oncol (2012): 486
Authors: Yuasa Y, Seike J, Yoshida T, Takechi H, Yamai H, Yamamoto Y, Furukita Y, Goto M, Minato T, Nishino T, Inoue S, Fujiwara S, Tangoku A.
Journal: Ann Surg Oncol (2012): 486
Indocyanine green angiography-guided photodynamic therapy for treatment of chronic central serous chorioretinopathy: a pilot study
Authors: Yannuzzi LA, Slakter JS, Gross NE, Spaide RF, Costa DL, Huang SJ, Klancnik JM, Jr., Aizman A.
Journal: Retina (2012): 288
Authors: Yannuzzi LA, Slakter JS, Gross NE, Spaide RF, Costa DL, Huang SJ, Klancnik JM, Jr., Aizman A.
Journal: Retina (2012): 288
Indocyanine green fluorescence endoscopy for visual differentiation of pituitary tumor from surrounding structures
Authors: Litvack ZN, Zada G, Laws ER, Jr.
Journal: J Neurosurg. (2012)
Authors: Litvack ZN, Zada G, Laws ER, Jr.
Journal: J Neurosurg. (2012)
Management of peripheral polypoidal choroidal vasculopathy with intravitreal bevacizumab and indocyanine green angiography-guided laser photocoagulation
Authors: Rishi P, Das A, Sarate P, Rishi E.
Journal: Indian J Ophthalmol (2012): 60
Authors: Rishi P, Das A, Sarate P, Rishi E.
Journal: Indian J Ophthalmol (2012): 60
Synthesis and characterization of bovine serum albumin-coated nanocapsules loaded with indocyanine green as potential multifunctional nanoconstructs
Authors: Jung B, Anvari B.
Journal: Biotechnol Prog (2012): 533
Authors: Jung B, Anvari B.
Journal: Biotechnol Prog (2012): 533
Page updated on December 6, 2024