logo
AAT Bioquest

iFluor® 488 azide

Although FITC is still the most popular fluorescent labeling dye for preparing green fluorescent bioconjugates, there are certain limitations with FITC, such as severe photobleaching for microscope imaging and pH-sensitive fluorescence. Protein conjugates prepared with iFluor® 488 dyes are far superior to conjugates of fluorescein derivatives such as FITC. iFluor® 488 conjugates are significantly brighter than fluorescein conjugates and are much more photostable. Additionally, the fluorescence of iFluor® 488 is not affected by pH (4-10). This pH insensitivity is a major improvement over fluorescein, which emits its maximum fluorescence only at pH above 9. iFluor® 488 azide dye is reasonably stable and shows good reactivity and selectivity with the alkyne group for click chemistry applications. The iFluor® 488 dyes are an excellent replacement to the Alexa Fluor dyes that have identical spectral properties ( Alexa Fluor® is the trademark of Invitrogen).

Calculators

Common stock solution preparation

Table 1. Volume of DMSO needed to reconstitute specific mass of iFluor® 488 azide to given concentration. Note that volume is only for preparing stock solution. Refer to sample experimental protocol for appropriate experimental/physiological buffers.

0.1 mg0.5 mg1 mg5 mg10 mg
1 mM139.554 µL697.769 µL1.396 mL6.978 mL13.955 mL
5 mM27.911 µL139.554 µL279.107 µL1.396 mL2.791 mL
10 mM13.955 µL69.777 µL139.554 µL697.769 µL1.396 mL

Molarity calculator

Enter any two values (mass, volume, concentration) to calculate the third.

Mass (Calculate)Molecular weightVolume (Calculate)Concentration (Calculate)Moles
/=x=

Spectrum

Product family

NameExcitation (nm)Emission (nm)Extinction coefficient (cm -1 M -1)Quantum yieldCorrection Factor (260 nm)Correction Factor (280 nm)
iFluor® 647 azide65667025000010.2510.030.03
iFluor® 488 tyramide4915167500010.910.210.11
iFluor® 555 azide55757010000010.6410.230.14
iFluor® 488 Styramide *Superior Replacement for Alexa Fluor 488 tyramide and Opal 520*4915167500010.910.210.11
iFluor® 488 TCO4915167500010.910.210.11
iFluor® 488 Tetrazine4915167500010.910.210.11
iFluor®488-dUTP *1 mM in TE Buffer (pH 7.5)*4915167500010.910.210.11
iFluor® 405 azide4034273700010.9110.480.77
iFluor® 790 Azide78781225000010.1310.10.09
ATTO 488 azide499520900000.800.220.09
Show More (1)

Citations

View all 30 citations: Citation Explorer
CARM1 phosphorylation at S595 by p38$\gamma$ MAPK drives ROS-mediated cellular senescence
Authors: Cho, Yena and Kim, Yong Kee
Journal: Redox Biology (2024): 103344
IKIP downregulates THBS1/FAK signaling to suppress migration and invasion by glioblastoma cells
Authors: Zhu, Zhaoying and Hu, Yanjia and Ye, Feng and Teng, Haibo and You, Guoliang and Zeng, Yunhui and Tian, Meng and Xu, Jianguo and Li, Jin and Liu, Zhiyong and others,
Journal: Oncology Research (2024): 1173
Intestinal inflammation marker calprotectin regulates epithelial intestinal zinc metabolism and proliferation in mouse jejunal organoids
Authors: Gonz{\'a}lez, R and Ceacero-Heras, D and Tena-Garitaonaindia, M and {\'A}lvarez-Mercado, A and G{\'a}mez-Belmonte, R and Chazin, WJ and de Medina, F S{\'a}nchez and Mart{\'\i}nez-Augustin, O
Journal: Biomedicine \& Pharmacotherapy (2024): 116555
Pharmacological inhibition of RAS overcomes FLT3 inhibitor resistance in FLT3-ITD+ AML through AP-1 and RUNX1
Authors: Coleman, Daniel JL and Keane, Peter and Chin, Paulynn S and Ames, Luke and Kellaway, Sophie and Blair, Helen and Khan, Naeem and Griffin, James and Holmes, Elizabeth and Maytum, Alexander and others,
Journal: iScience (2024)
A high-throughput DNA analysis method based on isothermal amplification on a suspension microarray for detecting mpox virus and viruses with comparable symptoms
Authors: Zhang, Liming and Liu, Jieyu and Huang, Shisi and Zeng, Wentao and Li, Li and Fan, Xihao and Lu, Zhuoxuan
Journal: Analytica Chimica Acta (2024): 342416

References

View all 49 references: Citation Explorer
Sequential ordering among multicolor fluorophores for protein labeling facility via aggregation-elimination based beta-lactam probes
Authors: Sadhu KK, Mizukami S, Watanabe S, Kikuchi K.
Journal: Mol Biosyst (2011): 1766
Visualizing dengue virus through Alexa Fluor labeling
Authors: Zhang S, Tan HC, Ooi EE.
Journal: J Vis Exp. (2011)
Fluorescent "Turn-on" system utilizing a quencher-conjugated peptide for specific protein labeling of living cells
Authors: Arai S, Yoon SI, Murata A, Takabayashi M, Wu X, Lu Y, Takeoka S, Ozaki M.
Journal: Biochem Biophys Res Commun (2011): 211
Neuroanatomical basis of clinical joint application of "Jinggu" (BL 64, a source-acupoint) and "Dazhong" (KI 4, a Luo-acupoint) in the rat: a double-labeling study of cholera toxin subunit B conjugated with Alexa Fluor 488 and 594
Authors: Cui JJ, Zhu XL, Ji CF, Jing XH, Bai WZ.
Journal: Zhen Ci Yan Jiu (2011): 262
Simultaneous detection of virulence factors from a colony in diarrheagenic Escherichia coli by a multiplex PCR assay with Alexa Fluor-labeled primers
Authors: Kuwayama M, Shigemoto N, Oohara S, Tanizawa Y, Yamada H, Takeda Y, Matsuo T, Fukuda S.
Journal: J Microbiol Methods (2011): 119
Page updated on October 8, 2024

Ordering information

Price
Unit size
Catalog Number1000
Quantity
Add to cart

Additional ordering information

Telephone1-800-990-8053
Fax1-800-609-2943
Emailsales@aatbio.com
InternationalSee distributors
Bulk requestInquire
Custom sizeInquire
Technical SupportContact us
Purchase orderSend to sales@aatbio.com
ShippingStandard overnight for United States, inquire for international
Request quotation

Physical properties

Molecular weight

716.57

Solvent

DMSO

Spectral properties

Correction Factor (260 nm)

0.21

Correction Factor (280 nm)

0.11

Extinction coefficient (cm -1 M -1)

750001

Excitation (nm)

491

Emission (nm)

516

Quantum yield

0.91

Storage, safety and handling

H-phraseH303, H313, H333
Hazard symbolXN
Intended useResearch Use Only (RUO)
R-phraseR20, R21, R22

Storage

Freeze (< -15 °C); Minimize light exposure
UNSPSC12171501
Click chemistry is a method for attaching a&nbsp;probe&nbsp;or&nbsp;substrate&nbsp;of interest to a specific biomolecule, a process called&nbsp;bioconjugation. The possibility of attaching&nbsp;fluorophores&nbsp;and other&nbsp;reporter molecules&nbsp;has made click chemistry a very powerful tool for identifying, locating, and characterizing both old and new biomolecules. The classic click reaction is the copper-catalyzed reaction of an&nbsp;azide&nbsp;with an&nbsp;alkyne&nbsp;to form a 5-membered&nbsp;heteroatom&nbsp;ring, this reaction is commonly called Cu(I)-Catalyzed Azide-Alkyne&nbsp;Cycloaddition&nbsp;(CuAAC).
Click chemistry is a method for attaching a&nbsp;probe&nbsp;or&nbsp;substrate&nbsp;of interest to a specific biomolecule, a process called&nbsp;bioconjugation. The possibility of attaching&nbsp;fluorophores&nbsp;and other&nbsp;reporter molecules&nbsp;has made click chemistry a very powerful tool for identifying, locating, and characterizing both old and new biomolecules. The classic click reaction is the copper-catalyzed reaction of an&nbsp;azide&nbsp;with an&nbsp;alkyne&nbsp;to form a 5-membered&nbsp;heteroatom&nbsp;ring, this reaction is commonly called Cu(I)-Catalyzed Azide-Alkyne&nbsp;Cycloaddition&nbsp;(CuAAC).
Click chemistry is a method for attaching a&nbsp;probe&nbsp;or&nbsp;substrate&nbsp;of interest to a specific biomolecule, a process called&nbsp;bioconjugation. The possibility of attaching&nbsp;fluorophores&nbsp;and other&nbsp;reporter molecules&nbsp;has made click chemistry a very powerful tool for identifying, locating, and characterizing both old and new biomolecules. The classic click reaction is the copper-catalyzed reaction of an&nbsp;azide&nbsp;with an&nbsp;alkyne&nbsp;to form a 5-membered&nbsp;heteroatom&nbsp;ring, this reaction is commonly called Cu(I)-Catalyzed Azide-Alkyne&nbsp;Cycloaddition&nbsp;(CuAAC).