iFluor® 660 maleimide
AAT Bioquest's iFluor® dyes are optimized for labeling proteins, in particular, antibodies. These dyes are bright, photostable and have minimal quenching on proteins. They can be well excited by the major laser lines of fluorescence instruments (e.g., 350, 405, 488, 514, 555, 633, 647 and 808 nm). iFluor® 660 dyes have fluorescence excitation and emission maxima of ~660 nm and ~680 nm respectively. These spectral characteristics make them a unique acceptor for preparing PE, APC and PerCP tandems that are widely used in flow cytometry applications. iFluor® 660 Maleimide is stable and shows good reactivity and selectivity with protein thiol group.
Spectrum
Open in Advanced Spectrum Viewer
Product family
Name | Excitation (nm) | Emission (nm) | Extinction coefficient (cm -1 M -1) | Quantum yield | Correction Factor (260 nm) | Correction Factor (280 nm) |
iFluor® 350 maleimide | 345 | 450 | 200001 | 0.951 | 0.83 | 0.23 |
iFluor® 488 maleimide | 491 | 516 | 750001 | 0.91 | 0.21 | 0.11 |
iFluor® 555 maleimide | 557 | 570 | 1000001 | 0.641 | 0.23 | 0.14 |
iFluor® 647 maleimide | 656 | 670 | 2500001 | 0.251 | 0.03 | 0.03 |
iFluor® 680 maleimide | 684 | 701 | 2200001 | 0.231 | 0.097 | 0.094 |
iFluor® 700 maleimide | 690 | 713 | 2200001 | 0.231 | 0.09 | 0.04 |
iFluor® 750 maleimide | 757 | 779 | 2750001 | 0.121 | 0.044 | 0.039 |
iFluor® 790 maleimide | 787 | 812 | 2500001 | 0.131 | 0.1 | 0.09 |
iFluor® 800 maleimide | 801 | 820 | 2500001 | 0.111 | 0.03 | 0.08 |
Show More (22) |
References
View all 31 references: Citation Explorer
Abortive ligation intermediate blocks seamless repair of double-stranded breaks.
Authors: Li, Xuegang and Jin, Jiacheng and Xu, Wenxuan and Wang, Mingdao and Liu, Liangwei
Journal: International journal of biological macromolecules (2022): 1498-1503
Authors: Li, Xuegang and Jin, Jiacheng and Xu, Wenxuan and Wang, Mingdao and Liu, Liangwei
Journal: International journal of biological macromolecules (2022): 1498-1503
On-site rapid and simultaneous detection of acetamiprid and fipronil using a dual-fluorescence lab-on-fiber biosensor.
Authors: Song, Dan and Liu, Jiayao and Xu, Wenjuan and Han, Xiangzhi and Wang, Hongliang and Zhuo, Yuxin and Li, Chunsheng and Long, Feng
Journal: Mikrochimica acta (2022): 234
Authors: Song, Dan and Liu, Jiayao and Xu, Wenjuan and Han, Xiangzhi and Wang, Hongliang and Zhuo, Yuxin and Li, Chunsheng and Long, Feng
Journal: Mikrochimica acta (2022): 234
Mechanism of Cyanine5 to Cyanine3 Photoconversion and Its Application for High-Density Single-Particle Tracking in a Living Cell.
Authors: Cho, Yoonjung and An, Hyeong Jeon and Kim, Taehoon and Lee, Chulbom and Lee, Nam Ki
Journal: Journal of the American Chemical Society (2021): 14125-14135
Authors: Cho, Yoonjung and An, Hyeong Jeon and Kim, Taehoon and Lee, Chulbom and Lee, Nam Ki
Journal: Journal of the American Chemical Society (2021): 14125-14135
Molecular and Spectroscopic Characterization of Green and Red Cyanine Fluorophores from the Alexa Fluor and AF Series*.
Authors: Gebhardt, Christian and Lehmann, Martin and Reif, Maria M and Zacharias, Martin and Gemmecker, Gerd and Cordes, Thorben
Journal: Chemphyschem : a European journal of chemical physics and physical chemistry (2021)
Authors: Gebhardt, Christian and Lehmann, Martin and Reif, Maria M and Zacharias, Martin and Gemmecker, Gerd and Cordes, Thorben
Journal: Chemphyschem : a European journal of chemical physics and physical chemistry (2021)
Restricted intramolecular rotation of fluorescent molecular rotors at the periphery of aqueous microdroplets in oil.
Authors: Kang, Jooyoun and Lhee, SangMoon and Lee, Jae Kyoo and Zare, Richard N and Nam, Hong Gil
Journal: Scientific reports (2020): 16859
Authors: Kang, Jooyoun and Lhee, SangMoon and Lee, Jae Kyoo and Zare, Richard N and Nam, Hong Gil
Journal: Scientific reports (2020): 16859
Page updated on October 11, 2024