logo
AAT Bioquest

mFluor™ Red 780 acid

mFluor™ Red 780 dyes are an excellent alternative to APC-Alexa Fluor® 750 tandems since they have the spectral properties equivalent to those of APC-Alexa Fluor® 750 conjugates. mFluor™ Red 780 dyes are water-soluble, and the protein conjugates prepared with mFluor™ Red 780 dyes are well excited at 633 nm to give red fluorescence (compatible with Cy7® filter). mFluor™ Red 780 dyes and conjugates are excellent red laser reagents for flow cytometry research. Compared to APC-Alexa Fluor® 750 tandems, mFluor™ Red 780 dyes are much more photostable, making them readily available for fluorescence imaging applications while it is very difficult to use the APC-Alexa Fluor® 750 conjugates for fluorescence imaging applications due to the rapid photobleaching of APC-Alexa Fluor® 750 tandems.

Calculators

Common stock solution preparation

Table 1. Volume of DMSO needed to reconstitute specific mass of mFluor™ Red 780 acid to given concentration. Note that volume is only for preparing stock solution. Refer to sample experimental protocol for appropriate experimental/physiological buffers.

0.1 mg0.5 mg1 mg5 mg10 mg
1 mM107.281 µL536.406 µL1.073 mL5.364 mL10.728 mL
5 mM21.456 µL107.281 µL214.562 µL1.073 mL2.146 mL
10 mM10.728 µL53.641 µL107.281 µL536.406 µL1.073 mL

Molarity calculator

Enter any two values (mass, volume, concentration) to calculate the third.

Mass (Calculate)Molecular weightVolume (Calculate)Concentration (Calculate)Moles
/=x=

Spectrum

Product family

NameExcitation (nm)Emission (nm)Extinction coefficient (cm -1 M -1)Correction Factor (260 nm)Correction Factor (280 nm)
mFluor™ Red 780 SE6297679000010.1010.116
mFluor™ Red 700 acid68069529500010.1350.127
mFluor™ Red 780 Styramide6297679000010.1010.116
Protonex™ Red 780 acid748769---

Citations

View all 3 citations: Citation Explorer
Deep Sequencing Analysis of the Eha-Regulated Transcriptome of Edwardsiella tarda Following Acidification
Authors: Gao, D and Liu, N and Li, Y and Zhang, Y and Liu, G and others, undefined
Journal: Metabolomics (Los Angel) (2017): 2153--0769
Suramin inhibits cullin-RING E3 ubiquitin ligases
Authors: Wu, Kenneth and Chong, Robert A and Yu, Qing and Bai, Jin and Spratt, Donald E and Ching, Kevin and Lee, Chan and Miao, Haibin and Tappin, Inger and Hurwitz, Jerard and others, undefined
Journal: Proceedings of the National Academy of Sciences (2016): E2011--E2018
Glycosaminoglycan mimicry by COAM reduces melanoma growth through chemokine induction and function
Authors: Piccard, Helene and Berghmans, Nele and Korpos, Eva and Dillen, Chris and Aelst, Ilse Van and Li, S and ra , undefined and Martens, Erik and Liekens, S and ra , undefined and Noppen, Sam and Damme, Jo Van and others, undefined
Journal: International Journal of Cancer (2012): E425--E436

References

View all 49 references: Citation Explorer
Sequential ordering among multicolor fluorophores for protein labeling facility via aggregation-elimination based beta-lactam probes
Authors: Sadhu KK, Mizukami S, Watanabe S, Kikuchi K.
Journal: Mol Biosyst (2011): 1766
Visualizing dengue virus through Alexa Fluor labeling
Authors: Zhang S, Tan HC, Ooi EE.
Journal: J Vis Exp. (2011)
Fluorescent "Turn-on" system utilizing a quencher-conjugated peptide for specific protein labeling of living cells
Authors: Arai S, Yoon SI, Murata A, Takabayashi M, Wu X, Lu Y, Takeoka S, Ozaki M.
Journal: Biochem Biophys Res Commun (2011): 211
Neuroanatomical basis of clinical joint application of "Jinggu" (BL 64, a source-acupoint) and "Dazhong" (KI 4, a Luo-acupoint) in the rat: a double-labeling study of cholera toxin subunit B conjugated with Alexa Fluor 488 and 594
Authors: Cui JJ, Zhu XL, Ji CF, Jing XH, Bai WZ.
Journal: Zhen Ci Yan Jiu (2011): 262
Simultaneous detection of virulence factors from a colony in diarrheagenic Escherichia coli by a multiplex PCR assay with Alexa Fluor-labeled primers
Authors: Kuwayama M, Shigemoto N, Oohara S, Tanizawa Y, Yamada H, Takeda Y, Matsuo T, Fukuda S.
Journal: J Microbiol Methods (2011): 119
Page updated on December 11, 2024

Ordering information

Price
Unit size
Catalog Number1147
Quantity
Add to cart

Additional ordering information

Telephone1-800-990-8053
Fax1-800-609-2943
Emailsales@aatbio.com
InternationalSee distributors
Bulk requestInquire
Custom sizeInquire
Technical SupportContact us
Purchase orderSend to sales@aatbio.com
ShippingStandard overnight for United States, inquire for international
Request quotation

Physical properties

Molecular weight

932.13

Solvent

DMSO

Spectral properties

Absorbance (nm)

630

Correction Factor (260 nm)

0.101

Correction Factor (280 nm)

0.116

Extinction coefficient (cm -1 M -1)

900001

Excitation (nm)

629

Emission (nm)

767

Storage, safety and handling

H-phraseH303, H313, H333
Hazard symbolXN
Intended useResearch Use Only (RUO)
R-phraseR20, R21, R22

Storage

Freeze (< -15 °C); Minimize light exposure
UNSPSC12171501
With EDAC or other equivalent activating coupling agents, fluorescent dyes can react readily with the primary amines (R-NH2) of proteins, amine-modified oligonucleotides, and other amine-containing molecules. The resulting dye conjugates are quite stable.
With EDAC or other equivalent activating coupling agents, fluorescent dyes can react readily with the primary amines (R-NH2) of proteins, amine-modified oligonucleotides, and other amine-containing molecules. The resulting dye conjugates are quite stable.
With EDAC or other equivalent activating coupling agents, fluorescent dyes can react readily with the primary amines (R-NH2) of proteins, amine-modified oligonucleotides, and other amine-containing molecules. The resulting dye conjugates are quite stable.