logo
AAT Bioquest

mFluor™ Violet 530 maleimide

Fluorescent dye maleimides are the most popular tool for conjugating dyes to a peptide, protein, antibody, thiol-modified oligonucleotide, or nucleic acid through their SH group. Maleimides react readily with the thiol group of proteins, thiol-modified oligonucleotides, and other thiol-containing molecules under neutral conditions. The resulting dye conjugates are quite stable.
Fluorescent dye maleimides are the most popular tool for conjugating dyes to a peptide, protein, antibody, thiol-modified oligonucleotide, or nucleic acid through their SH group. Maleimides react readily with the thiol group of proteins, thiol-modified oligonucleotides, and other thiol-containing molecules under neutral conditions. The resulting dye conjugates are quite stable.
Fluorescent dye maleimides are the most popular tool for conjugating dyes to a peptide, protein, antibody, thiol-modified oligonucleotide, or nucleic acid through their SH group. Maleimides react readily with the thiol group of proteins, thiol-modified oligonucleotides, and other thiol-containing molecules under neutral conditions. The resulting dye conjugates are quite stable.
Ordering information
Price
Catalog Number
Unit Size
Quantity
Add to cart
Additional ordering information
Telephone1-800-990-8053
Fax1-800-609-2943
Emailsales@aatbio.com
InternationalSee distributors
Bulk requestInquire
Custom sizeInquire
ShippingStandard overnight for United States, inquire for international
Request quotation
Physical properties
Molecular weight1212.05
SolventDMSO
Spectral properties
Absorbance (nm)398
Extinction coefficient (cm -1 M -1)200001
Excitation (nm)393
Emission (nm)543
Storage, safety and handling
H-phraseH303, H313, H333
Hazard symbolXN
Intended useResearch Use Only (RUO)
R-phraseR20, R21, R22
StorageFreeze (< -15 °C); Minimize light exposure
Related products
mFluor™ Violet 450 SE
mFluor™ Violet 510 SE
mFluor™ Violet 540 SE
mFluor™ Blue 570 SE
mFluor™ Green 620 SE
mFluor™ Yellow 630 SE
mFluor™ Red 700 SE
mFluor™ Red 780 SE
mFluor™ Red 780 amine
mFluor™ Violet 450-VAD-FMK
mFluor™ 510-VAD-FMK
mFluor™ Violet 450-streptavidin conjugate
mFluor™ Violet 510-streptavidin conjugate
mFluor™ Violet 540-streptavidin conjugate
mFluor™ Blue 570-streptavidin conjugate
mFluor™ Green 620-streptavidin conjugate
mFluor™ Yellow 630-streptavidin conjugate
mFluor™ Red 700-streptavidin conjugate
mFluor™ Red 780-streptavidin conjugate
mFluor™ Violet 450-dUTP *1 mM in Tris Buffer (pH 7.5)*
mFluor™ Violet 450 acid
mFluor™ Violet 510 acid
mFluor™ Violet 540 acid
mFluor™ Blue 570 acid
mFluor™ Green 620 acid
mFluor™ Yellow 630 acid
mFluor™ Red 700 acid
mFluor™ Violet 500 SE
mFluor™ UV375 SE
mFluor™ Red 780 acid
mFluor™ UV460 SE
mFluor™ Blue 630 SE
mFluor™ Blue 660 SE
mFluor™ Violet 610 SE
mFluor™ Green 630 SE
mFluor™ Blue 580 SE
mFluor™ Blue 590 SE
mFluor™ Blue 620 SE
mFluor™ Red 780 Maleimide
mFluor™ Violet 550 SE
mFluor™ Violet 505 SE
mFluor™ Violet 590 SE
mFluor™ Violet 545 SE
mFluor™ UV420 SE
mFluor™ UV455 SE
mFluor™ UV520 SE
mFluor™ UV540 SE
mFluor™ UV610 SE
mFluor™ Violet 450 Azide
mFluor™ UV 375 Biotin Conjugate
mFluor™ UV 460 Biotin Conjugate
mFluor™ Violet 500 Biotin Conjugate
mFluor™ Violet 540 Biotin Conjugate
mFluor™ Red 780 Biotin Conjugate
mFluor™ Violet 480 SE
mFluor™ Blue 660 tyramide
mFluor™ Violet 450-PEG4-Biotin Conjugate
mFluor™ Violet 450-Wheat Germ Agglutinin (WGA) Conjugate
mFluor™ Violet 500-Wheat Germ Agglutinin (WGA) Conjugate
mFluor™ Violet 540-Wheat Germ Agglutinin (WGA) Conjugate
mFluor™ Blue 585 SE
mFluor™ Blue 583 SE
mFluor™ Blue 580 Styramide
mFluor™ Blue 630 Styramide
mFluor™ Blue 660 Styramide
mFluor™ Green 620 Styramide
mFluor™ Red 780 Styramide
mFluor™ Violet 540 Styramide
mFluor™ Violet 545 Styramide
mFluor™ Violet 610 Styramide
mFluor™ UV455-streptavidin conjugate
mFluor™ Violet 545-streptavidin conjugate
mFluor™ Violet 550-streptavidin conjugate
mFluor™ Violet 590-streptavidin conjugate
mFluor™ Violet 610-streptavidin conjugate
mFluor™ UV 375 goat anti-mouse IgG (H+L)
mFluor™ UV 375 goat anti-rabbit IgG (H+L)
mFluor™ UV 375 goat anti-rabbit IgG (H+L) *Cross-Absorbed*
mFluor™ UV 375 goat anti-mouse IgG (H+L) *Cross-Absorbed*
mFluor™ Violet 510 goat anti-mouse IgG (H+L)
mFluor™ Violet 510 goat anti-mouse IgG (H+L) *Cross-Absorbed*
mFluor™ Violet 510 goat anti-rabbit IgG (H+L)
mFluor™ Violet 510 goat anti-rabbit IgG (H+L) *Cross-Absorbed*
mFluor™ Red 780 goat anti-rabbit IgG (H+L) *Cross-Absorbed*
mFluor™ Red 780 goat anti-rabbit IgG (H+L)
mFluor™ Red 780 goat anti-mouse IgG (H+L) *Cross-Absorbed*
mFluor™ Red 780 goat anti-mouse IgG (H+L)
mFluor™ Blue 585 Anti-human CD4 Antibody *SK3*
mFluor™ UV420-streptavidin conjugate
mFluor™ Blue 615 SE
mFluor™ Green 615 SE
Show More (81)

OverviewpdfSDSpdfProtocol


Molecular weight
1212.05
Absorbance (nm)
398
Extinction coefficient (cm -1 M -1)
200001
Excitation (nm)
393
Emission (nm)
543
mFluor™ Violet 530 dyes have fluorescence excitation and emission maxima of ~405 nm and ~530 nm respectively. These spectral characteristics make them a unique color for flow cytometry application. mFluor™ Violet 530 Maleimide is reasonably stable and shows good reactivity and selectivity with thiol group. It provides a convenient tool to label the reduced form of monoclonal, polyclonal antibodies or other proteins that contains a thiol group. These conjugates are useful for flow cytometric applications with the violet laser excitation, in particular suitable for spectral flow cytometric applications. mFluor™ dyes are developed for multicolor flow cytometry-focused applications. These dyes have large Stokes Shifts and can be well excited by the laser lines of flow cytometers (e.g., 350 nm, 405 nm, 488 nm and 633 nm). mFluor™ Violet dyes are optimized to be excited with a Violet laser at 405 nm. AAT Bioquest offers the largest collection of fluorescent dyes that are excited by Violet laser at 405 nm.

Example protocol


PREPARATION OF STOCK SOLUTIONS

Unless otherwise noted, all unused stock solutions should be divided into single-use aliquots and stored at -20 °C after preparation. Avoid repeated freeze-thaw cycles.

1. mFluor™ Violet 530 maleimide stock solution (Solution B)
Add anhydrous DMSO into the vial of mFluor™ Violet 530 maleimide to make a 10 mM stock solution. Mix well by pipetting or vortex. Note: Prepare the dye stock solution (Solution B) before starting the conjugation. Use promptly. Extended storage of the dye stock solution may reduce the dye activity. Solution B can be stored in freezer for upto 4 weeks when kept from light and moisture. Avoid freeze-thaw cycles.

2. Protein stock solution (Solution A)
Mix 100 µL of a reaction buffer (e.g., 100 mM MES buffer with pH ~6.0) with 900 µL of the target protein solution (e.g. antibody, protein concentration >2 mg/mL if possible) to give 1 mL protein labeling stock solution. Note: The pH of the protein solution (Solution A) should be 6.5 ± 0.5. Note: Impure antibodies or antibodies stabilized with bovine serum albumin (BSA) or other proteins will not be labeled well. Note: The conjugation efficiency is significantly reduced if the protein concentration is less than 2 mg/mL. For optimal labeling efficiency the final protein concentration range of 2-10 mg/mL is recommended.
Optional: if your protein does not contain a free cysteine, you must treat your protein with DTT or TCEP to generate a thiol group. DTT or TCEP are used for converting a disulfide bond to two free thiol groups. If DTT is used you must remove free DTT by dialysis or gel filtration before conjugating a dye maleimide to your protein. Following is a sample protocol for generating a free thiol group:
  1. Prepare a fresh solution of 1 M DTT (15.4 mg/100 µL) in distilled water.
  2. Make IgG solution in 20 mM DTT: add 20 µL of DTT stock per ml of IgG solution while mixing. Let stand at room temp for 30 minutes without additional mixing (to minimize reoxidation of cysteines to cystines).
  3. Pass the reduced IgG over a filtration column pre-equilibrated with "Exchange Buffer". Collect 0.25 mL fractions off the column.
  4. Determine the protein concentrations and pool the fractions with the majority of the IgG. This can be done either spectrophotometrically or colorimetrically.
  5. Carry out the conjugation as soon as possible after this step (see Sample Experiment Protocol). Note: IgG solutions should be >4 mg/mL for the best results. The antibody should be concentrated if less than 2 mg/mL. Include an extra 10% for losses on the buffer exchange column. Note: The reduction can be carried out in almost any buffers from pH 7-7.5, e.g., MES, phosphate or TRIS buffers. Note: Steps 3 and 4 can be replaced by dialysis. 

SAMPLE EXPERIMENTAL PROTOCOL

This labeling protocol was developed for the conjugate of Goat anti-mouse IgG with mFluor™ Violet 530 maleimide. You might need further optimization for your particular proteins. Note: Each protein requires distinct dye/protein ratio, which also depends on the properties of dyes. Over labeling of a protein could detrimentally affects its binding affinity while the protein conjugates of low dye/protein ratio gives reduced sensitivity.

Run conjugation reaction
  1. Use 10:1 molar ratio of Solution B (dye)/Solution A (protein) as the starting point:  Add 5 µL of the dye stock solution (Solution B, assuming the dye stock solution is 10 mM) into the vial of the protein solution (95 µL of Solution A) with effective shaking. The concentration of the protein is ~0.05 mM assuming the protein concentration is 10 mg/mL and the molecular weight of the protein is ~200KD. Note: We recommend to use 10:1 molar ratio of Solution B (dye)/Solution A (protein). If it is too less or too high, determine the optimal dye/protein ratio at 5:1, 15:1 and 20:1 respectively.
  2. Continue to rotate or shake the reaction mixture at room temperature for 30-60 minutes. 

Purify the conjugation
The following protocol is an example of dye-protein conjugate purification by using a Sephadex G-25 column.
  1. Prepare Sephadex G-25 column according to the manufacture instruction.
  2. Load the reaction mixture (From "Run conjugation reaction") to the top of the Sephadex G-25 column.
  3. Add PBS (pH 7.2-7.4) as soon as the sample runs just below the top resin surface.
  4. Add more PBS (pH 7.2-7.4) to the desired sample to complete the column purification. Combine the fractions that contain the desired dye-protein conjugate. Note: For immediate use, the dye-protein conjugate need be diluted with staining buffer, and aliquoted for multiple uses. Note: For longer term storage, dye-protein conjugate solution need be concentrated or freeze dried. 

Calculators


Common stock solution preparation

Table 1. Volume of DMSO needed to reconstitute specific mass of mFluor™ Violet 530 maleimide to given concentration. Note that volume is only for preparing stock solution. Refer to sample experimental protocol for appropriate experimental/physiological buffers.

0.1 mg0.5 mg1 mg5 mg10 mg
1 mM82.505 µL412.524 µL825.048 µL4.125 mL8.25 mL
5 mM16.501 µL82.505 µL165.01 µL825.048 µL1.65 mL
10 mM8.25 µL41.252 µL82.505 µL412.524 µL825.048 µL

Molarity calculator

Enter any two values (mass, volume, concentration) to calculate the third.

Mass (Calculate)Molecular weightVolume (Calculate)Concentration (Calculate)Moles
/=x=

Spectrum


Open in Advanced Spectrum Viewer
spectrum

Spectral properties

Absorbance (nm)398
Extinction coefficient (cm -1 M -1)200001
Excitation (nm)393
Emission (nm)543

Product Family


NameExcitation (nm)Emission (nm)Extinction coefficient (cm -1 M -1)Quantum yieldCorrection Factor (260 nm)Correction Factor (280 nm)
mFluor™ Violet 450 maleimide4064453500010.8110.3380.078
mFluor™ Violet 530 SE393543200001---

Images


References


View all 48 references: Citation Explorer
Automated fluorescence gating and size determination reduce variation in measured concentration of extracellular vesicles by flow cytometry.
Authors: Gankema, A A F and Li, B and Nieuwland, R and van der Pol, E
Journal: Cytometry. Part A : the journal of the International Society for Analytical Cytology (2022)
Azo dyes decolorization under high alkalinity and salinity conditions by Halomonas sp. in batch and packed bed reactor.
Authors: Montañez-Barragán, B and Sanz-Martín, J L and Gutiérrez-Macías, P and Morato-Cerro, A and Rodríguez-Vázquez, R and Barragán-Huerta, B E
Journal: Extremophiles : life under extreme conditions (2020): 239-247
Adsorption of Remazol Brilliant Violet-5R Textile Dye from Aqueous Solutions by Using Eggshell Waste Biosorbent.
Authors: Rápó, Eszter and Aradi, László Előd and Szabó, Ábel and Posta, Katalin and Szép, Robert and Tonk, Szende
Journal: Scientific reports (2020): 8385
Process optimization and filtration performance of an anaerobic dynamic membrane bioreactor treating textile wastewaters.
Authors: Yurtsever, Adem and Basaran, Erkan and Ucar, Deniz
Journal: Journal of environmental management (2020): 111114
Simultaneous Polychromatic Immunofluorescent Staining of Tissue Sections and Consecutive Imaging of up to Seven Parameters by Standard Confocal Microscopy.
Authors: Schmidt, Alfonso J and Mayer, Johannes U and Wallace, Paul K and Ronchese, Franca and Price, Kylie M
Journal: Current protocols in cytometry (2019): e64
Remediation of complex remazol effluent using biochar derived from green seaweed biomass.
Authors: Gokulan, Ravindiran and Prabhu, Ganapathy Ganesh and Jegan, Josephraj
Journal: International journal of phytoremediation (2019): 1179-1189
Diet-induced microbial autofluorescence confounds flow cytometry of ex vivo isolated fecal microbes.
Authors: Denu, Lidiya and Lubin, Jean-Bernard and Douglas, Bonnie and Tuluc, Florin and Silverman, Michael A
Journal: European journal of immunology (2019): 2252-2254
Fluorochrome choices for multi-color flow cytometry.
Authors: Flores-Montero, Juan and Kalina, Tomas and Corral-Mateos, Alba and Sanoja-Flores, Luzalba and Pérez-Andrés, Martin and Martin-Ayuso, Marta and Sedek, Lukasz and Rejlova, Katerina and Mayado, Andrea and Fernández, Paula and van der Velden, Vincent and Bottcher, Sebastian and van Dongen, Jaques J M and Orfao, Alberto
Journal: Journal of immunological methods (2019): 112618
Adsorptive Removal of Remazol Brilliant Violet-5R Dye from Aqueous Solutions using Calcined Eggshell as Biosorbent.
Authors: Rápó, Eszter and Posta, Katalin and Suciu, Maria and Szép, Robert and Tonk, Szende
Journal: Acta chimica Slovenica (2019): 648-658
Semiconductor Nanoplatelets: A New Class of Ultrabright Fluorescent Probes for Cytometric and Imaging Applications.
Authors: Kechkeche, Djamila and Cao, Edgar and Grazon, Chloé and Caschera, Filippo and Noireaux, Vincent and Baron Niel, Marie-Laurence and Dubertret, Benoit
Journal: ACS applied materials & interfaces (2018): 24739-24749