Actively helping customers, employees and the global community during the coronavirus SARS-CoV-2 outbreak.  Learn more >>

ReadiUse™ CFSE [5-(and 6)-Carboxyfluorescein diacetate, succinimidyl ester] *CAS 150347-59-4*

Chemical structure for ReadiUse™ CFSE [5-(and 6)-Carboxyfluorescein diacetate, succinimidyl ester] *CAS 150347-59-4*
Chemical structure for ReadiUse™ CFSE [5-(and 6)-Carboxyfluorescein diacetate, succinimidyl ester] *CAS 150347-59-4*
Ordering information
Price ()
Catalog Number22028
Unit Size
Find Distributor
Additional ordering information
Telephone1-408-733-1055
Fax1-408-733-1304
Emailsales@aatbio.com
InternationalSee distributors
ShippingStandard overnight for United States, inquire for international
Physical properties
Molecular weight557.46
SolventDMSO
Spectral properties
Excitation (nm)498
Emission (nm)517
Storage, safety and handling
H-phraseH303, H313, H333
Hazard symbolXN
Intended useResearch Use Only (RUO)
R-phraseR20, R21, R22
StorageFreeze (< -15 °C); Minimize light exposure
UNSPSC12352200

OverviewpdfSDSpdfProtocol


CAS
150347-59-4
Molecular weight
557.46
Excitation (nm)
498
Emission (nm)
517
It is widely recognized that fluorescent labeling of cells is an effective means to determine total cell numbers or how many viable cells exist in a sample. Flow cytometry combined with fluorescent staining is a powerful tool to analyze heterogeneous cell populations. Fluorescein diacetate (FDA) and its derivatives are non-fluorescent molecules that diffuse into cells and are hydrolyzed by intracellular non-specific esterases to give fluorescent products. The fluorescent products can be accumulated only in those cells that have intact cell membranes; therefore, dead cells with leaky membranes are not stained. The precise kinetics of membrane transport and intracellular hydrolysis of FDA and its analogs (such as CDCFDA) are related to cellular functions, thus FDA labeling can be used for monitoring cells by flow cytometry or fluorescence microscopy. The fluorescence intensity of labeled cells by FDA dyes varies considerably among cell lines and strains, probably because of differences in intracellular esterase activity. CFSE is an amine-reactive FDA derivative that is widely used for monitoring cell proliferation with a flow cytometer. AAT Bioquest offers this convenient package size for flow cytometric use. Each vial of CFSE may be reconstituted to a stock concentration of 10 mM with 90 uL of anhydrous DMSO. The DMSO stock solution should be protected from light and stored at -20°C with dessicant, avoiding freeze-thawing.

Calculators


Common stock solution preparation

Table 1. Volume of DMSO needed to reconstitute specific mass of ReadiUse™ CFSE [5-(and 6)-Carboxyfluorescein diacetate, succinimidyl ester] *CAS 150347-59-4* to given concentration. Note that volume is only for preparing stock solution. Refer to sample experimental protocol for appropriate experimental/physiological buffers.

0.1 mg0.5 mg1 mg5 mg10 mg
1 mM179.385 µL896.925 µL1.794 mL8.969 mL17.939 mL
5 mM35.877 µL179.385 µL358.77 µL1.794 mL3.588 mL
10 mM17.939 µL89.693 µL179.385 µL896.925 µL1.794 mL

Molarity calculator

Enter any two values (mass, volume, concentration) to calculate the third.

Mass (Calculate)Molecular weightVolume (Calculate)Concentration (Calculate)Moles
/=x=

Spectrum


Open in Advanced Spectrum Viewer
spectrum

Spectral properties

Excitation (nm)498
Emission (nm)517

Citations


View all 7 citations: Citation Explorer
Acid tolerance response of Listeria monocytogenes in various external pHs with different concentrations of lactic acid
Authors: Liu, Yunge and Zhu, Lixian and Dong, Pengcheng and Liang, Rongrong and Mao, Yanwei and Yang, Xiaoyin and Zhang, Yimin and Luo, Xin
Journal: Foodborne Pathogens and Disease (2020): 253--261
The utility of DLA typing for transplantation medicine in canine models
Authors: Sato, Keita and Miyamae, Jiro and Sakai, Manabu and Okano, Masaharu and Katakura, Fumihiko and Shibuya, Hisashi and Nakayama, Tomohiro and Moritomo, Tadaaki
Journal: Journal of Veterinary Medical Science (2020): 20--0142
Acid Tolerance Response of Listeria monocytogenes in Various External pHs with Different Concentrations of Lactic Acid
Authors: Liu, Yunge and Zhu, Lixian and Dong, Pengcheng and Liang, Rongrong and Mao, Yanwei and Yang, Xiaoyin and Zhang, Yimin and Luo, Xin
Journal: Foodborne pathogens and disease (2019)
Fluid and cell behaviors along a 3D printed alginate/gelatin/fibrin channel
Authors: Xu, Yufan and Wang, Xiaohong
Journal: Biotechnology and bioengineering (2015): 1683--1695
Overexpression of the CaTIP1-1 pepper gene in tobacco enhances resistance to osmotic stresses
Authors: Yin, Yan-Xu and Wang, Shu-Bin and Xiao, Huai-Juan and Zhang, Huai-Xia and Zhang, Zhen and Jing, Hua and Zhang, Ying-Li and Chen, Ru-Gang and Gong, Zhen-Hui
Journal: International journal of molecular sciences (2014): 20101--20116
Identification of VAR2CSA domain-specific inhibitory antibodies of the Plasmodium falciparum erythrocyte membrane protein 1 using a novel flow cytometry assay
Authors: Obiakor, Harold and Avril, Marion and MacDonald, Nicholas J and Srinivasan, Prakash and Reiter, Karine and Anderson, Charles and Holmes, Kevin L and Fried, Michal and Duffy, Patrick E and Smith, Joseph D and others, undefined
Journal: Clinical and Vaccine Immunology (2013): 433--442
Aging enhances maceration-induced ultrastructural alteration of the epidermis and impairment of skin barrier function
Authors: Minematsu, Takeo and Yamamoto, Yuko and Nagase, Takashi and Naito, Ayumi and Takehara, Kimie and Iizaka, Shinji and Komagata, Kazunori and Huang, Lijuan and Nakagami, Gojiro and Akase, Tomoko and others, undefined
Journal: Journal of dermatological science (2011): 160--168

References


View all 68 references: Citation Explorer
Novel method for cell debris removal in the flow cytometric cell cycle analysis using carboxy-fluorescein diacetate succinimidyl ester
Authors: Terho P, Lassila O.
Journal: Cytometry A (2006): 552
Modification of the fluorescein diacetate assay for screening of antifungal agents against Candida albicans: comparison with the NCCLS methods
Authors: Brouwer N, Kohen J, Jamie J, Vemulpad S.
Journal: J Microbiol Methods (2006): 234
Optimisation of the fluorescein diacetate antibacterial assay
Authors: Wan, undefined and y S, Brouwer N, Liu Q, Mahon A, Cork S, Karuso P, Vemulpad S, Jamie J.
Journal: J Microbiol Methods (2005): 21
A three-dimensional flow control concept for single-cell experiments on a microchip. 2. Fluorescein diacetate metabolism and calcium mobilization in a single yeast cell as stimulated by glucose and pH changes
Authors: Peng XY, Li PC.
Journal: Anal Chem (2004): 5282
Effect of immunosuppressants on T-cell subsets observed in vivo using carboxy-fluorescein diacetate succinimidyl ester labeling
Authors: Hu H, Dong Y, Feng P, Fechner J, Hamawy M, Knechtle SJ.
Journal: Transplantation (2003): 1075
Carboxy-fluorescein diacetate, succinimidyl ester labeled papillomavirus virus-like particles fluoresce after internalization and interact with heparan sulfate for binding and entry
Authors: Drobni P, Mistry N, McMillan N, Ev and er M., undefined
Journal: Virology (2003): 163
Detection of Saccharomyces cerevisiae carboxylesterase activity after native and sodium dodecyl sulfate electrophoresis by using fluorescein diacetate as substrate
Authors: Lomolino G, Lante A, Crapisi A, Spettoli P, Curioni A.
Journal: Electrophoresis (2001): 1021
Fluorescein diacetate hydrolysis as a measure of fungal biomass in soil
Authors: Gaspar ML, Cabello MN, Pollero R, Aon MA.
Journal: Curr Microbiol (2001): 339
Extrusion of fluorescein diacetate by multidrug-resistant Candida albicans
Authors: Yang HC, Mikami Y, Imai T, Taguchi H, Nishimura K, Miyaji M, Branchini ML.
Journal: Mycoses (2001): 368
Potential problems with fluorescein diacetate assays of cell viability when testing natural products for antimicrobial activity
Authors: Clarke JM, Gillings MR, Altavilla N, Beattie AJ.
Journal: J Microbiol Methods (2001): 261