logo
AAT Bioquest

Sunnyvale Red™ SE *Superior 6-ROX Replacement*

  
  
  
Ordering information
Price
Catalog Number
Unit Size
Quantity
Add to cart
Additional ordering information
Telephone1-800-990-8053
Fax1-800-609-2943
Emailsales@aatbio.com
InternationalSee distributors
Bulk requestInquire
Custom sizeInquire
ShippingStandard overnight for United States, inquire for international
Request quotation
Physical properties
Molecular weight659.73
SolventDMSO
Spectral properties
Excitation (nm)591
Emission (nm)624
Storage, safety and handling
H-phraseH303, H313, H333
Hazard symbolXN
Intended useResearch Use Only (RUO)
R-phraseR20, R21, R22
StorageFreeze (< -15 °C); Minimize light exposure
UNSPSC12171501

OverviewpdfSDSpdfProtocol


Molecular weight
659.73
Excitation (nm)
591
Emission (nm)
624
Although ROX dyes have strong fluorescence they are notoriously unstable. Some commercial samples only have a few months shelf life. Compared to 6-ROX labeling compounds our Sunnyvale Red™ dyes have greatly enhanced stability while they have essentially identical spectral properties to those of 6-ROX when conjugated to a biological substrate (such as oligonucleotides). Our preliminary studies indicated that Sunnyvale Red-derived oligos are more easily purified than the corresponding 6-ROX oligos in some cases.

Calculators


Common stock solution preparation

Table 1. Volume of DMSO needed to reconstitute specific mass of Sunnyvale Red™ SE *Superior 6-ROX Replacement* to given concentration. Note that volume is only for preparing stock solution. Refer to sample experimental protocol for appropriate experimental/physiological buffers.

0.1 mg0.5 mg1 mg5 mg10 mg
1 mM151.577 µL757.886 µL1.516 mL7.579 mL15.158 mL
5 mM30.315 µL151.577 µL303.154 µL1.516 mL3.032 mL
10 mM15.158 µL75.789 µL151.577 µL757.886 µL1.516 mL

Molarity calculator

Enter any two values (mass, volume, concentration) to calculate the third.

Mass (Calculate)Molecular weightVolume (Calculate)Concentration (Calculate)Moles
/=x=

Spectrum


Open in Advanced Spectrum Viewer
spectrum

Spectral properties

Excitation (nm)591
Emission (nm)624

Product Family


NameExcitation (nm)Emission (nm)Extinction coefficient (cm -1 M -1)Correction Factor (260 nm)Correction Factor (280 nm)
LRB Red™ SE558575-0.210.171
California Red™ SE59260910000010.240.194

Images


References


View all 11 references: Citation Explorer
Four-color DNA sequencing by synthesis on a chip using photocleavable fluorescent nucleotides
Authors: Seo TS, Bai X, Kim DH, Meng Q, Shi S, Ruparel H, Li Z, Turro NJ, Ju J.
Journal: Proc Natl Acad Sci U S A (2005): 5926
Adsorption of oligonucleotides on PMMA/PNIPAM core-shell latexes: polarity of the PNIPAM shell probed by fluorescence
Authors: Prazeres TJ, Santos AM, Martinho JM, Elaissari A, Pichot C.
Journal: Langmuir (2004): 6834
Photocleavable fluorescent nucleotides for DNA sequencing on a chip constructed by site-specific coupling chemistry
Authors: Seo TS, Bai X, Ruparel H, Li Z, Turro NJ, Ju J.
Journal: Proc Natl Acad Sci U S A (2004): 5488
Evaluation of surface-enhanced resonance Raman scattering for quantitative DNA analysis
Authors: Faulds K, Smith WE, Graham D.
Journal: Anal Chem (2004): 412
Blue light-induced generation of reactive oxygen species in photoreceptor ellipsoids requires mitochondrial electron transport
Authors: Yang JH, Basinger SF, Gross RL, Wu SM.
Journal: Invest Ophthalmol Vis Sci (2003): 1312
HLA-DRB fluorotyping by dark quenching and automated analysis
Authors: Slateva K, Elsner HA, Albis-Camps M, Blasczyk R.
Journal: Tissue Antigens (2001): 250
Influence of fluorophor dye labels on the migration behavior of polymerase chain reaction--amplified short tandem repeats during denaturing capillary electrophoresis
Authors: Hahn M, Wilhelm J, Pingoud A.
Journal: Electrophoresis (2001): 2691
Design, synthesis, and spectroscopic properties of peptide-bridged fluorescence energy-transfer cassettes
Authors: Li Y, Glazer AN.
Journal: Bioconjug Chem (1999): 241
Differential display with carboxy-X-rhodamine-labeled primers and the selection of differentially amplified cDNA fragments without cloning
Authors: Yoshikawa Y, Mukai H, Asada K, Hino F, Kato I.
Journal: Anal Biochem (1998): 82
Comparison of fluorescence energy transfer primers with different donor-acceptor dye combinations
Authors: Hung SC, Mathies RA, Glazer AN.
Journal: Anal Biochem (1998): 32