Tide Fluor™ 3 succinimidyl ester [TF3 SE]*Superior replacement for Cy3*
Ordering information
Price | |
Catalog Number | |
Unit Size | |
Quantity |
Additional ordering information
Telephone | 1-800-990-8053 |
Fax | 1-800-609-2943 |
sales@aatbio.com | |
Quotation | Request |
International | See distributors |
Shipping | Standard overnight for United States, inquire for international |
Physical properties
Molecular weight | 555.58 |
Solvent | DMSO |
Spectral properties
Correction Factor (280 nm) | 0.179 |
Extinction coefficient (cm -1 M -1) | 750001 |
Excitation (nm) | 554 |
Emission (nm) | 578 |
Storage, safety and handling
H-phrase | H303, H313, H333 |
Hazard symbol | XN |
Intended use | Research Use Only (RUO) |
R-phrase | R20, R21, R22 |
Storage | Freeze (< -15 °C); Minimize light exposure |
UNSPSC | 12171501 |
Related products
Overview | ![]() ![]() |
See also: Amine Reactive Dyes and Probes for Conjugation, Bioconjugation, Dye to Peptide Conjugation, Cell Structures and Organelles, Nucleus, Chemical Reagents, Dyes by Functional Group, Förster Resonance Energy Transfer (FRET), Peptide and Oligonucleotide Labeling, Digital PCR, DNA and RNA Quantitation, Physiological Probes, Polymerase Chain Reaction (PCR), Real-Time PCR (qPCR), Reverse Transcription PCR (RT-PCR), RNA Purification & Analysis, Tide Fluor Dyes, PCR Detection of Viral DNA/RNA
Molecular weight 555.58 | Correction Factor (280 nm) 0.179 | Extinction coefficient (cm -1 M -1) 750001 | Excitation (nm) 554 | Emission (nm) 578 |
Tide Fluor™ 3 (TF3) family has the spectral properties essentially identical to those of Cy3. Compared to Cy3 probes TF3 family has much stronger fluorescence and higher photostability. Additionally their fluorescence is pH-independent from pH 3 to 11. These characteristics make this new dye family a superior alternative to Cy3. TF3-labeled peptides and nucleotides exhibit much stronger fluorescence and higher photostability than the ones labeled with Cy3. In pairing with our Tide Quencher™ 3 (TQ3), a variety of FRET peptides and nucleotides can be developed for detecting proteases and molecular beacons with enhanced sensitivity and stability.
Calculators
Common stock solution preparation
Table 1. Volume of DMSO needed to reconstitute specific mass of Tide Fluor™ 3 succinimidyl ester [TF3 SE]*Superior replacement for Cy3* to given concentration. Note that volume is only for preparing stock solution. Refer to sample experimental protocol for appropriate experimental/physiological buffers.
0.1 mg | 0.5 mg | 1 mg | 5 mg | 10 mg | |
1 mM | 179.992 µL | 899.96 µL | 1.8 mL | 9 mL | 17.999 mL |
5 mM | 35.998 µL | 179.992 µL | 359.984 µL | 1.8 mL | 3.6 mL |
10 mM | 17.999 µL | 89.996 µL | 179.992 µL | 899.96 µL | 1.8 mL |
Molarity calculator
Enter any two values (mass, volume, concentration) to calculate the third.
Mass (Calculate) | Molecular weight | Volume (Calculate) | Concentration (Calculate) | Moles | ||||
/ | = | x | = |
Spectrum
Open in Advanced Spectrum Viewer


Spectral properties
Correction Factor (280 nm) | 0.179 |
Extinction coefficient (cm -1 M -1) | 750001 |
Excitation (nm) | 554 |
Emission (nm) | 578 |
Product Family
Name | Excitation (nm) | Emission (nm) | Extinction coefficient (cm -1 M -1) | Correction Factor (280 nm) |
Tide Fluor™ 1 succinimidyl ester [TF1 SE]*Superior replacement for EDANS* | 341 | 448 | 20000 | 0.187 |
Tide Fluor™ 2, succinimidyl ester [TF2 SE]*Superior replacement for fluorescein* | 503 | 525 | 75000 | 0.09 |
Tide Fluor™ 5WS succinimidyl ester [TF5WS SE]*Superior replacement for Cy5* | 649 | 664 | 250000 | 0.027 |
Tide Fluor™ 4, succinimidyl ester [TF4 SE]*Superior replacement for ROX and Texas Red* | 578 | 602 | 90000 | 0.436 |
Tide Fluor™ 6WS succinimidyl ester [TF6WS SE]*Superior replacement for Cy5.5* | 682 | 701 | 220000 | 0.101 |
Tide Fluor™ 7WS, succinimidyl ester [TF7WS SE]*Superior replacement for Cy7* | 756 | 780 | 275000 | 0.049 |
Tide Fluor™ 8WS, succinimidyl ester [TF8WS SE]*Near Infrared Emission* | 785 | 801 | 250000 | 0.109 |
Tide Fluor™ 3WS succinimidyl ester [TF3WS SE] *Superior replacement for Cy3* | 551 | 563 | 150000 | 0.079 |
Tide Fluor™ 2WS succinimidyl ester [TF2WS SE] *Superior replacement for FITC* | 491 | 516 | 75000 | 0.11 |
Show More (1) |
Images

Figure 1. Fluorescent dye NHS esters (or succinimidyl esters) are the most popular tool for conjugating dyes to a peptide, protein, antibody, amino-modified oligonucleotide or nucleic acid. NHS esters react readily with the primary amines (R-NH2) of proteins, amine-modified oligonucleotides, and other amine-containing molecules. The resulting dye conjugates are quite stable.

Figure 2. The schematic procedures of coupling reaction of aa-RNA and NHS ester-linked Tide Fluor 3; (a) Schematic illustration of the labeling workflow at U22 position. Residues highlighted on secondary structure of U22-aa-rbA in blue represent the first 13 nucleotides synthesized in the initiation stage, residues highlighted in orange, gree, and red represent 3step in elongation stage. The aminoally atom is represented by red dot at position 22, and TF3 is represented by green star. (b) Illustration of reaction between aminoallyl-modified RNA and NHS ester-linked fluorescent dyes. (c) HPLC profiles for original method efficiency. The spectra in black is original method, in red is unreacted aa-RNA. Source: Optimization of N-hydroxysuccinimide ester coupling with aminoallyl-modified RNA for fluorescent labeling by Mengyang Li, Bioengineered, April 2020.
Citations
View all 9 citations: Citation Explorer
Optimization of N-hydroxysuccinimide ester coupling with aminoallyl-modified RNA for fluorescent labeling
Authors: Li, Mengyang
Journal: Bioengineered (2020): 599--606
Authors: Li, Mengyang
Journal: Bioengineered (2020): 599--606
To what extent do fluorophores bias the biological activity of peptides? A practical approach using membrane-active peptides as models
Authors: Cavaco, Marco and P{\'e}rez-Peinado, Clara and Valle, Javier and Silva, R{\'u}ben DM and Correia, Jo{\~a}o DG and Andreu, David and Castanho, Miguel ARB and Neves, Vera
Journal: Frontiers in bioengineering and biotechnology (2020): 552035
Authors: Cavaco, Marco and P{\'e}rez-Peinado, Clara and Valle, Javier and Silva, R{\'u}ben DM and Correia, Jo{\~a}o DG and Andreu, David and Castanho, Miguel ARB and Neves, Vera
Journal: Frontiers in bioengineering and biotechnology (2020): 552035
A mechanistic model to predict effects of cathepsin B and cystatin C on β-amyloid aggregation and degradation
Authors: Perlenfein, Tyler J and Murphy, Regina M
Journal: Journal of Biological Chemistry (2017): jbc--M117
Authors: Perlenfein, Tyler J and Murphy, Regina M
Journal: Journal of Biological Chemistry (2017): jbc--M117
Real-Time Detection of a Self-Replicating RNA Enzyme
Authors: Olea, Charles and Joyce, Gerald F
Journal: Molecules (2016): 1310
Authors: Olea, Charles and Joyce, Gerald F
Journal: Molecules (2016): 1310
Maternal serum glycosylated fibronectin as a point-of-care biomarker for assessment of preeclampsia
Authors: Rasanen, Juha and Quinn, Matthew J and Laurie, Amber and Bean, Eric and Roberts, Charles T and Nagalla, Srinivasa R and Gravett, Michael G
Journal: American journal of obstetrics and gynecology (2015): 82--e1
Authors: Rasanen, Juha and Quinn, Matthew J and Laurie, Amber and Bean, Eric and Roberts, Charles T and Nagalla, Srinivasa R and Gravett, Michael G
Journal: American journal of obstetrics and gynecology (2015): 82--e1
Development of Multi-Parametric/Multimodal Spectroscopy Apparatus for Characterization of Functional Interfaces
Authors: Zhou, Lang and Arugula, Mary and Easley, Christopher J and Shannon, Curtis and Simonian, Aleks and r, undefined
Journal: ECS Transactions (2015): 9--16
Authors: Zhou, Lang and Arugula, Mary and Easley, Christopher J and Shannon, Curtis and Simonian, Aleks and r, undefined
Journal: ECS Transactions (2015): 9--16
Array of biodegradable microrafts for isolation and implantation of living, adherent cells
Authors: Wang, Yuli and Phillips, Colleen N and Herrera, Gabriela S and Sims, Christopher E and Yeh, Jen Jen and Allbritton, Nancy L
Journal: RSC advances (2013): 9264--9272
Authors: Wang, Yuli and Phillips, Colleen N and Herrera, Gabriela S and Sims, Christopher E and Yeh, Jen Jen and Allbritton, Nancy L
Journal: RSC advances (2013): 9264--9272
Development of SNAP-Tag Fluorogenic Probes for Wash-Free Fluorescence Imaging
Authors: Sun, Xiaoli and Zhang, Aihua and Baker, Brenda and Sun, Luo and Howard, Angela and Buswell, John and Maurel, Damien and Masharina, Anastasiya and Johnsson, Kai and Noren, Christopher J and others, undefined
Journal: ChemBioChem (2011): 2217--2226
Authors: Sun, Xiaoli and Zhang, Aihua and Baker, Brenda and Sun, Luo and Howard, Angela and Buswell, John and Maurel, Damien and Masharina, Anastasiya and Johnsson, Kai and Noren, Christopher J and others, undefined
Journal: ChemBioChem (2011): 2217--2226
FERRAMENTAS PARA ESTUDO DA BIOLOGIA DE GPCRS (G-PROTEIN COUPLED RECEPTORS)
Authors: Soriani, Frederico Marianetti and Russo, Remo Castro
Authors: Soriani, Frederico Marianetti and Russo, Remo Castro
References
View all 25 references: Citation Explorer
Time-resolved FRET method for typing polymorphic alleles of the human leukocyte antigen system by using a single DNA probe
Authors: Andreoni A, Bondani M, Nardo L.
Journal: Photochem Photobiol Sci (2009): 1202
Authors: Andreoni A, Bondani M, Nardo L.
Journal: Photochem Photobiol Sci (2009): 1202
Tumor-specific detection of an optically targeted antibody combined with a quencher-conjugated neutravidin "quencher-chaser": a dual "quench and chase" strategy to improve target to nontarget ratios for molecular imaging of cancer
Authors: Ogawa M, Kosaka N, Choyke PL, Kobayashi H.
Journal: Bioconjug Chem (2009): 147
Authors: Ogawa M, Kosaka N, Choyke PL, Kobayashi H.
Journal: Bioconjug Chem (2009): 147
The detection of platelet derived growth factor using decoupling of quencher-oligonucleotide from aptamer/quantum dot bioconjugates
Authors: Kim GI, Kim KW, Oh MK, Sung YM.
Journal: Nanotechnology (2009): 175503
Authors: Kim GI, Kim KW, Oh MK, Sung YM.
Journal: Nanotechnology (2009): 175503
Development of a cell-based hepatitis C virus infection fluorescent resonance energy transfer assay for high-throughput antiviral compound screening
Authors: Yu X, Sainz B, Jr., Uprichard SL.
Journal: Antimicrob Agents Chemother (2009): 4311
Authors: Yu X, Sainz B, Jr., Uprichard SL.
Journal: Antimicrob Agents Chemother (2009): 4311
An improved cell-penetrating, caspase-activatable, near-infrared fluorescent peptide for apoptosis imaging
Authors: Maxwell D, Chang Q, Zhang X, Barnett EM, Piwnica-Worms D.
Journal: Bioconjug Chem (2009): 702
Authors: Maxwell D, Chang Q, Zhang X, Barnett EM, Piwnica-Worms D.
Journal: Bioconjug Chem (2009): 702
Feasibility of single nucleotide polymorphism genotyping with a single-probe by time-resolved Forster resonance energy transfer
Authors: Andreoni A, Bondani M, Nardo L.
Journal: Mol Cell Probes (2009): 119
Authors: Andreoni A, Bondani M, Nardo L.
Journal: Mol Cell Probes (2009): 119
Photodynamic molecular beacon triggered by fibroblast activation protein on cancer-associated fibroblasts for diagnosis and treatment of epithelial cancers
Authors: Lo PC, Chen J, Stefflova K, Warren MS, Navab R, B and archi B, Mullins S, Tsao M, Cheng JD, Zheng G.
Journal: J Med Chem (2009): 358
Authors: Lo PC, Chen J, Stefflova K, Warren MS, Navab R, B and archi B, Mullins S, Tsao M, Cheng JD, Zheng G.
Journal: J Med Chem (2009): 358
Rapid detection and quantification of Propionibacteriaceae
Authors: Goldschmidt P, Ferreira CC, Degorge S, Benallaoua D, Boutboul S, Laroche L, Batellier L, Chaumeil C.
Journal: Br J Ophthalmol (2009): 258
Authors: Goldschmidt P, Ferreira CC, Degorge S, Benallaoua D, Boutboul S, Laroche L, Batellier L, Chaumeil C.
Journal: Br J Ophthalmol (2009): 258
Evaluation of tetramethylrhodamine and black hole quencher 1 labeled probes and five commercial amplification mixes in TaqMan real-time RT-PCR assays for respiratory pathogens
Authors: Yang GP, Erdman DD, Tondella ML, Fields BS.
Journal: J Virol Methods (2009): 288
Authors: Yang GP, Erdman DD, Tondella ML, Fields BS.
Journal: J Virol Methods (2009): 288
Design of FRET-TaqMan probes for multiplex real-time PCR using an internal positive control
Authors: Jothikumar P, Hill V, Narayanan J.
Journal: Biotechniques (2009): 519
Authors: Jothikumar P, Hill V, Narayanan J.
Journal: Biotechniques (2009): 519
Application notes
Bright Tide Fluor™-Based Fluorescent Peptides and Their Applications In Drug Discovery and Disease Diagnosis
A New Protein Crosslinking Method for Labeling and Modifying Antibodies
Abbreviation of Common Chemical Compounds Related to Peptides
FITC (Fluorescein isothiocyanate)
Fluorescein isothiocyanate (FITC)
A New Protein Crosslinking Method for Labeling and Modifying Antibodies
Abbreviation of Common Chemical Compounds Related to Peptides
FITC (Fluorescein isothiocyanate)
Fluorescein isothiocyanate (FITC)