logo
AAT Bioquest

Tide Fluor™ 7WS alkyne [TF7WS alkyne]

Tide Fluor™ 7WS (TF7WS) family has the spectral properties similar to those of Cy7, IRDye 800 and Alexa Fluor 750. Their fluorescence is pH-independent from pH 3 to 11. These characteristics make this new dye family more robust to pH-sensitive assays. In some cases TF7-labeled peptides and nucleotides exhibit stronger fluorescence and higher photostability than the ones labeled with Cy7, IRDye 800 and Alexa Fluor 750. In pairing with our Tide Quencher™ 7WS (TQ7WS), a variety of FRET peptides and nucleotides can be developed for detecting proteases and molecular beacons with enhanced sensitivity and stability. This TF7WS product is reactive to azides, and useful for click chemistry.

Calculators

Common stock solution preparation

Table 1. Volume of DMSO needed to reconstitute specific mass of Tide Fluor™ 7WS alkyne [TF7WS alkyne] to given concentration. Note that volume is only for preparing stock solution. Refer to sample experimental protocol for appropriate experimental/physiological buffers.

0.1 mg0.5 mg1 mg5 mg10 mg
1 mM107.756 µL538.781 µL1.078 mL5.388 mL10.776 mL
5 mM21.551 µL107.756 µL215.513 µL1.078 mL2.155 mL
10 mM10.776 µL53.878 µL107.756 µL538.781 µL1.078 mL

Molarity calculator

Enter any two values (mass, volume, concentration) to calculate the third.

Mass (Calculate)Molecular weightVolume (Calculate)Concentration (Calculate)Moles
/=x=

Spectrum

Product family

Citations

View all 7 citations: Citation Explorer
A mechanistic model to predict effects of cathepsin B and cystatin C on β-amyloid aggregation and degradation
Authors: Perlenfein, Tyler J and Murphy, Regina M
Journal: Journal of Biological Chemistry (2017): jbc--M117
Real-Time Detection of a Self-Replicating RNA Enzyme
Authors: Olea, Charles and Joyce, Gerald F
Journal: Molecules (2016): 1310
Maternal serum glycosylated fibronectin as a point-of-care biomarker for assessment of preeclampsia
Authors: Rasanen, Juha and Quinn, Matthew J and Laurie, Amber and Bean, Eric and Roberts, Charles T and Nagalla, Srinivasa R and Gravett, Michael G
Journal: American journal of obstetrics and gynecology (2015): 82--e1
Development of Multi-Parametric/Multimodal Spectroscopy Apparatus for Characterization of Functional Interfaces
Authors: Zhou, Lang and Arugula, Mary and Easley, Christopher J and Shannon, Curtis and Simonian, Aleks and r, undefined
Journal: ECS Transactions (2015): 9--16
Array of biodegradable microrafts for isolation and implantation of living, adherent cells
Authors: Wang, Yuli and Phillips, Colleen N and Herrera, Gabriela S and Sims, Christopher E and Yeh, Jen Jen and Allbritton, Nancy L
Journal: RSC advances (2013): 9264--9272

References

View all 25 references: Citation Explorer
Evaluation of tetramethylrhodamine and black hole quencher 1 labeled probes and five commercial amplification mixes in TaqMan real-time RT-PCR assays for respiratory pathogens
Authors: Yang GP, Erdman DD, Tondella ML, Fields BS.
Journal: J Virol Methods (2009): 288
Time-resolved FRET method for typing polymorphic alleles of the human leukocyte antigen system by using a single DNA probe
Authors: Andreoni A, Bondani M, Nardo L.
Journal: Photochem Photobiol Sci (2009): 1202
Tumor-specific detection of an optically targeted antibody combined with a quencher-conjugated neutravidin "quencher-chaser": a dual "quench and chase" strategy to improve target to nontarget ratios for molecular imaging of cancer
Authors: Ogawa M, Kosaka N, Choyke PL, Kobayashi H.
Journal: Bioconjug Chem (2009): 147
The detection of platelet derived growth factor using decoupling of quencher-oligonucleotide from aptamer/quantum dot bioconjugates
Authors: Kim GI, Kim KW, Oh MK, Sung YM.
Journal: Nanotechnology (2009): 175503
Development of a cell-based hepatitis C virus infection fluorescent resonance energy transfer assay for high-throughput antiviral compound screening
Authors: Yu X, Sainz B, Jr., Uprichard SL.
Journal: Antimicrob Agents Chemother (2009): 4311
Page updated on December 6, 2024

Ordering information

Price
Unit size
Catalog Number2305
Quantity
Add to cart

Additional ordering information

Telephone1-800-990-8053
Fax1-800-609-2943
Emailsales@aatbio.com
InternationalSee distributors
Bulk requestInquire
Custom sizeInquire
Technical SupportContact us
Purchase orderSend to sales@aatbio.com
ShippingStandard overnight for United States, inquire for international
Request quotation

Physical properties

Molecular weight

928.02

Solvent

DMSO

Spectral properties

Correction Factor (280 nm)

0.049

Extinction coefficient (cm -1 M -1)

275000

Excitation (nm)

756

Emission (nm)

780

Quantum yield

0.31

Storage, safety and handling

H-phraseH303, H313, H333
Hazard symbolXN
Intended useResearch Use Only (RUO)
R-phraseR20, R21, R22

Storage

Freeze (< -15 °C); Minimize light exposure
UNSPSC12171501
Click chemistry is a method for attaching a&nbsp;probe&nbsp;or&nbsp;substrate&nbsp;of interest to a specific biomolecule, a process called&nbsp;bioconjugation. The possibility of attaching&nbsp;fluorophores&nbsp;and other&nbsp;reporter molecules&nbsp;has made click chemistry a very powerful tool for identifying, locating, and characterizing both old and new biomolecules. The classic click reaction is the copper-catalyzed reaction of an&nbsp;azide&nbsp;with an&nbsp;alkyne&nbsp;to form a 5-membered&nbsp;heteroatom&nbsp;ring, this reaction is commonly called Cu(I)-Catalyzed Azide-Alkyne&nbsp;Cycloaddition&nbsp;(CuAAC).
Click chemistry is a method for attaching a&nbsp;probe&nbsp;or&nbsp;substrate&nbsp;of interest to a specific biomolecule, a process called&nbsp;bioconjugation. The possibility of attaching&nbsp;fluorophores&nbsp;and other&nbsp;reporter molecules&nbsp;has made click chemistry a very powerful tool for identifying, locating, and characterizing both old and new biomolecules. The classic click reaction is the copper-catalyzed reaction of an&nbsp;azide&nbsp;with an&nbsp;alkyne&nbsp;to form a 5-membered&nbsp;heteroatom&nbsp;ring, this reaction is commonly called Cu(I)-Catalyzed Azide-Alkyne&nbsp;Cycloaddition&nbsp;(CuAAC).
Click chemistry is a method for attaching a&nbsp;probe&nbsp;or&nbsp;substrate&nbsp;of interest to a specific biomolecule, a process called&nbsp;bioconjugation. The possibility of attaching&nbsp;fluorophores&nbsp;and other&nbsp;reporter molecules&nbsp;has made click chemistry a very powerful tool for identifying, locating, and characterizing both old and new biomolecules. The classic click reaction is the copper-catalyzed reaction of an&nbsp;azide&nbsp;with an&nbsp;alkyne&nbsp;to form a 5-membered&nbsp;heteroatom&nbsp;ring, this reaction is commonly called Cu(I)-Catalyzed Azide-Alkyne&nbsp;Cycloaddition&nbsp;(CuAAC).