Tide Quencher™ 5.1WS maleimide [TQ5.1WS maleimide]
Tide Quencher™ 5.1WS (TQ5.1WS) is a non-fluorescent molecule designed to efficiently quench the fluorescence of common NIR fluorophores such as Cy5, Cy5.5, Alexa Fluor® 647, Alexa Fluor® 647, iFluor® 647 and iFluor® 680. It is an improved version of TQ5 and QSY 21 and BHQ3). TQ5.1WS is designed to be a superior quencher with (a). much stronger absorption, and (b). much higher quenching efficiency. Tide Quencher™ 5.1WS maleimide is primarily used for the post-labeling of thiol-modified oligonucleotides and the Cys residues of peptides. It can be used in techniques such as polymerase chain reaction (PCR), real-time PCR, and DNA sequencing. In these applications, fluorescence signals are used to monitor the amplification or detection of specific DNA sequences. TQ5.1WS quenches the fluorescent signal until a specific event (like DNA strand separation or primer extension) occurs, leading to an increase in fluorescence that can be detected and quantified. Fluorescence resonance energy transfer (FRET)-based assays are widely used to detect and measure the presence of specific molecules in a sample. They involve the use of a fluorescent molecule (fluorophore) and a quencher molecule such as TQ5.1WS. The fluorophore emits light when excited by a specific wavelength of light, while the quencher molecule absorbs this emitted light, effectively "quenching" the fluorescence signal.
References
View all 31 references: Citation Explorer
Design of the New Closo-Dodecarborate-Containing Gemcitabine Analogue for the Albumin-Based Theranostics Composition.
Authors: Raskolupova, Valeria I and Wang, Meiling and Dymova, Maya A and Petrov, Gleb O and Shchudlo, Ivan M and Taskaev, Sergey Yu and Abramova, Tatyana V and Godovikova, Tatyana S and Silnikov, Vladimir N and Popova, Tatyana V
Journal: Molecules (Basel, Switzerland) (2023)
Authors: Raskolupova, Valeria I and Wang, Meiling and Dymova, Maya A and Petrov, Gleb O and Shchudlo, Ivan M and Taskaev, Sergey Yu and Abramova, Tatyana V and Godovikova, Tatyana S and Silnikov, Vladimir N and Popova, Tatyana V
Journal: Molecules (Basel, Switzerland) (2023)
Sensitive and specific detection of breast cancer lymph node metastasis through dual-modality magnetic particle imaging and fluorescence molecular imaging: a preclinical evaluation.
Authors: Wang, Guorong and Li, Wenzhe and Shi, Guangyuan and Tian, Yu and Kong, Lingyan and Ding, Ning and Lei, Jing and Jin, Zhengyu and Tian, Jie and Du, Yang
Journal: European journal of nuclear medicine and molecular imaging (2022): 2723-2734
Authors: Wang, Guorong and Li, Wenzhe and Shi, Guangyuan and Tian, Yu and Kong, Lingyan and Ding, Ning and Lei, Jing and Jin, Zhengyu and Tian, Jie and Du, Yang
Journal: European journal of nuclear medicine and molecular imaging (2022): 2723-2734
Development and Characterization of a Novel Peptide-Drug Conjugate with DM1 for Treatment of FGFR2-Positive Tumors.
Authors: Wang, Yayu and Li, Yadan and Cao, Jieqiong and Meng, Qilin and Li, Xiaocen and Zhang, Yibo and Lam, Kit S and Hong, An and Liu, Ruiwu and Chen, Xiaojia
Journal: Biomedicines (2021)
Authors: Wang, Yayu and Li, Yadan and Cao, Jieqiong and Meng, Qilin and Li, Xiaocen and Zhang, Yibo and Lam, Kit S and Hong, An and Liu, Ruiwu and Chen, Xiaojia
Journal: Biomedicines (2021)
Molecular and Spectroscopic Characterization of Green and Red Cyanine Fluorophores from the Alexa Fluor and AF Series*.
Authors: Gebhardt, Christian and Lehmann, Martin and Reif, Maria M and Zacharias, Martin and Gemmecker, Gerd and Cordes, Thorben
Journal: Chemphyschem : a European journal of chemical physics and physical chemistry (2021)
Authors: Gebhardt, Christian and Lehmann, Martin and Reif, Maria M and Zacharias, Martin and Gemmecker, Gerd and Cordes, Thorben
Journal: Chemphyschem : a European journal of chemical physics and physical chemistry (2021)
Cyclic RGD-Functionalized closo-Dodecaborate Albumin Conjugates as Integrin Targeting Boron Carriers for Neutron Capture Therapy.
Authors: Kawai, Kazuki and Nishimura, Kai and Okada, Satoshi and Sato, Shinichi and Suzuki, Minoru and Takata, Takushi and Nakamura, Hiroyuki
Journal: Molecular pharmaceutics (2020): 3740-3747
Authors: Kawai, Kazuki and Nishimura, Kai and Okada, Satoshi and Sato, Shinichi and Suzuki, Minoru and Takata, Takushi and Nakamura, Hiroyuki
Journal: Molecular pharmaceutics (2020): 3740-3747
Page updated on October 6, 2024