logo
AAT Bioquest

Tide Quencher™ 7.1 CPG [TQ7.1 CPG] *500 Å*

Product Image
Product Image
Gallery Image 1
Ordering information
Price
Catalog Number
Unit Size
Quantity
Add to cart
Additional ordering information
Telephone1-800-990-8053
Fax1-800-609-2943
Emailsales@aatbio.com
InternationalSee distributors
Bulk requestInquire
Custom sizeInquire
ShippingStandard overnight for United States, inquire for international
Request quotation
Physical properties
SolventMeCN
Spectral properties
Correction Factor (260 nm)0.229
Correction Factor (280 nm)0.193
Extinction coefficient (cm -1 M -1)75,0001
Storage, safety and handling
H-phraseH303, H313, H333
Hazard symbolXN
Intended useResearch Use Only (RUO)
R-phraseR20, R21, R22
StorageFreeze (< -15 °C); Minimize light exposure
Related products
Tide Quencher™ 2WS acid [TQ2WS acid]
Tide Quencher™ 2WS succinimidyl ester [TQ2WS, SE]
Tide Quencher™ 2WS maleimide [TQ2WS maleimide]
Tide Quencher™ 4WS acid [TQ4WS acid]
Tide Quencher™ 4WS amine [TQ4WS amine]
Tide Quencher™ 4 CPG [TQ4 CPG] *500 Å*
Tide Quencher™ 4 CPG [TQ4 CPG] *1000 Å*
Tide Quencher™ 4WS maleimide [TQ4WS maleimide]
Tide Quencher™ 4WS succinimidyl ester [TQ4WS SE]
Tide Quencher™ 4WS azide [TQ4WS azide]
Tide Quencher™ 4WS alkyne [TQ4WS alkyne]
Tide Quencher™ 5WS acid [TQ5WS acid]
Tide Quencher™ 5WS amine [TQ5WS amine]
Tide Quencher™ 5 CPG [TQ5 CPG] *500 Å*
Tide Quencher™ 5 CPG [TQ5 CPG] *1000 Å*
Tide Quencher™ 5WS maleimide [TQ5WS maleimide]
Tide Quencher™ 5WS succinimidyl ester [TQ5WS SE]
Tide Quencher™ 5WS alkyne [TQ5WS alkyne]
Tide Quencher™ 6WS acid [TQ6WS acid]
Tide Quencher™ 6WS amine [TQ6WS amine]
Tide Quencher™ 6WS maleimide [TQ6WS maleimide]
Tide Quencher™ 6WS succinimidyl ester [TQ6WS SE]
Tide Quencher™ 6WS azide [TQ6WS azide]
Tide Quencher™ 6WS alkyne [TQ6WS alkyne]
Tide Quencher™ 7WS acid [TQ7WS acid]
Tide Quencher™ 7WS amine [TQ7WS amine]
Tide Quencher™ 7WS maleimide [TQ7WS maleimide]
Tide Quencher™ 7WS succinimidyl ester [TQ7WS SE]
Tide Quencher™ 7WS alkyne [TQ7WS alkyne]
Tide Quencher™ 1 azide [TQ1 azide]
Tide Quencher™ 1 alkyne [TQ1 alkyne]
Tide Quencher™ 1 acid [TQ1 acid]
Tide Quencher™ 1 amine [TQ1 amine]
Tide Quencher™ 1 CPG [TQ1 CPG] *500 Å*
Tide Quencher™ 1 CPG [TQ1 CPG] *1000 Å*
Tide Quencher™ 1 maleimide [TQ1 maleimide]
Tide Quencher™ 1 phosphoramidite [TQ1 phosphoramidite]
Tide Quencher™ 1 succinimidyl ester [TQ1 SE]
Tide Quencher™ 2 acid [TQ2 acid]
Tide Quencher™ 2 amine [TQ2 amine]
Tide Quencher™ 2 CPG [TQ2 CPG] *500 Å*
Tide Quencher™ 2 CPG [TQ2 CPG] *1000 Å*
Tide Quencher™ 2 phosphoramidite [TQ2 phosphoramidite]
Tide Quencher™ 2 succinimidyl ester [TQ2 SE]
Tide Quencher™ 2 azide [TQ2 azide]
Tide Quencher™ 2 alkyne [TQ2 alkyne]
Tide Quencher™ 3 acid [TQ3 acid]
Tide Quencher™ 3 amine [TQ3 amine]
Tide Quencher™ 3 CPG [TQ3 CPG] *500 Å*
Tide Quencher™ 3 CPG [TQ3 CPG] *1000 Å*
Tide Quencher™ 3 maleimide [TQ3 maleimide]
Tide Quencher™ 3WS acid [TQ3WS acid]
Tide Quencher™ 3 phosphoramidite [TQ3 phosphoramidite]
Tide Quencher™ 3WS succinimidyl ester [TQ3WS SE]
Tide Quencher™ 3 succinimidyl ester [TQ3 SE]
Tide Quencher™ 3 azide [TQ3 azide]
Tide Quencher™ 3 alkyne [TQ3 alkyne]
Tide Quencher™ 2WS alkyne [TQ2WS alkyne]
Tide Quencher™ 4WS-DBCO [TQ4WS-DBCO]
Tide Quencher™ 5WS azide [TQ5WS azide]
Tide Quencher™ 7WS azide [TQ7WS azide]
Tide Quencher™ 5.1WS acid [TQ5.1WS acid]
Tide Quencher™ 5.1WS amine [TQ5.1WS amine]
Tide Quencher™ 5.1WS maleimide [TQ5.1WS maleimide]
Tide Quencher™ 5.1WS succinimidyl ester [TQ5.1WS SE]
Tide Quencher™ 5.1WS azide [TQ5.1WS azide]
Tide Quencher™ 5.1WS alkyne [TQ5.1WS alkyne]
Tide Quencher™ 7.1WS acid [TQ7.1WS acid]
Tide Quencher™ 7.1WS amine [TQ7.1WS amine]
Tide Quencher™ 7.1WS maleimide [TQ7.1WS maleimide]
Tide Quencher™ 7.1WS succinimidyl ester [TQ7.1WS SE]
Tide Quencher™ 7.1WS azide [TQ7.1WS azide]
Tide Quencher™ 7.1WS alkyne [TQ7.1WS alkyne]
Tide Quencher™ 7.2WS acid [TQ7.2WS acid]
Tide Quencher™ 7.2WS amine [TQ7.2WS amine]
Tide Quencher™ 7.2WS maleimide [TQ7.2WS maleimide]
Tide Quencher™ 7.2WS succinimidyl ester [TQ7.2WS SE]
Tide Quencher™ 7.2WS azide [TQ7.2WS azide]
Tide Quencher™ 7.2WS alkyne [TQ7.2WS alkyne]
Tide Quencher™ 8WS acid [TQ8WS acid]
Tide Quencher™ 8WS amine [TQ8WS amine]
Tide Quencher™ 8 CPG [TQ8 CPG] *500 Å*
Tide Quencher™ 8WS maleimide [TQ8WS maleimide]
Tide Quencher™ 8WS succinimidyl ester [TQ8WS SE]
Tide Quencher™ 8WS azide [TQ8WS azide]
Tide Quencher™ 8WS alkyne [TQ8WS alkyne]
Tide Quencher™ 8 CPG [TQ8 CPG] *1000 Å*
Tide Quencher™ 3WS maleimide [TQ3 maleimide]
Show More (78)

OverviewpdfSDSpdfProtocol


Correction Factor (260 nm)
0.229
Correction Factor (280 nm)
0.193
Extinction coefficient (cm -1 M -1)
75,0001
Tide Quencher™ 7.1 (TQ7.1) is a non-fluorescent molecule designed to efficiently quench the fluorescence of common NIR fluorophores such as Cy7, Alexa Fluor® 700, Alexa Fluor® 750, iFluor® 700, iFluor® 710, iFluor® 720 and iFluor® 750. It is an improved version of TQ7 and BHQ3. TQ7.1 is designed to be a superior quencher with (a). much stronger absorption, and (b). much higher quenching efficiency for NIR dyes. Tide Quencher™ 7.1 CPG is an excellent building block for preparing TQ7.1-labeled oligonucleotides. The oligo prepared from (TQ7.1 CPG) may be deprotected in 0.05M potassium carbonate in methanol for 4 hours at room temperature for 2 hours. Alternatively, the oligo may be deprotected in ammonium hydroxide at room temperature for 24-36 hours. It can be used in techniques such as polymerase chain reaction (PCR), real-time PCR, and DNA sequencing. In these applications, fluorescence signals are used to monitor the amplification or detection of specific DNA sequences. TQ7.1 quenches the fluorescent signal until a specific event (like DNA strand separation or primer extension) occurs, leading to an increase in fluorescence that can be detected and quantified.

Spectrum


Open in Advanced Spectrum Viewer
spectrum

Spectral properties

Correction Factor (260 nm)0.229
Correction Factor (280 nm)0.193
Extinction coefficient (cm -1 M -1)75,0001

Images


References


View all 17 references: Citation Explorer
Cooperatively enhanced photothermal-chemotherapy via simultaneously downregulating HSPs and promoting DNA alkylation in cancer cells.
Authors: Zou, Yang and Huang, Daipeng and He, Shan and Song, Xuefang and Liu, Weijian and Sun, Wen and Du, Jianjun and Fan, Jiangli and Peng, Xiaojun
Journal: Chemical science (2023): 1010-1017
Accurate identification of kidney injury progression via a fluorescent biosensor array.
Authors: Yu, Xie-An and Zhang, Lei and Zhang, Ran and Bai, Xuefei and Zhang, Ying and Hu, Yiting and Wu, Yang and Li, Ziyi and Wang, Bing and Tian, Jiangwei
Journal: Mikrochimica acta (2022): 304
Hydroxyapatite nanoparticles promote mitochondrial-based pyroptosis via activating calcium homeostasis and redox imbalance in vascular smooth muscle cells.
Authors: Xia, Yubin and Li, Bohou and Zhang, Fengxia and Wu, Qiong and Wen, Sichun and Jiang, Nan and Liu, Ding and Huang, Cong and Liu, Shuangxin
Journal: Nanotechnology (2022)
Near-infrared/pH dual-responsive nanocomplexes for targeted imaging and chemo/gene/photothermal tri-therapies of non-small cell lung cancer.
Authors: Li, Ziying and Zhu, Lisheng and Liu, Weiqun and Zheng, Yilin and Li, Xudong and Ye, Jinxiang and Li, Bifei and Chen, Haijun and Gao, Yu
Journal: Acta biomaterialia (2020): 242-259
Near-Infrared Dual-Emission Ratiometric Fluorescence Imaging Nanoprobe for Real-Time Tracing the Generation of Endogenous Peroxynitrite in Single Living Cells and In Vivo.
Authors: Lin, Pengxiang and Chen, Dongxia and Zhang, Liangliang and Xu, Jiayao and Huang, Yong and Zhao, Shulin
Journal: ACS omega (2020): 13278-13286
Single-Molecule FRET Detection of Sub-Nanometer Distance Changes in the Range below a 3-Nanometer Scale.
Authors: Son, Heyjin and Mo, Woori and Park, Jaeil and Lee, Joong-Wook and Lee, Sanghwa
Journal: Biosensors (2020)
In vitro isolation of small-molecule-binding aptamers with intrinsic dye-displacement functionality.
Authors: Yu, Haixiang and Yang, Weijuan and Alkhamis, Obtin and Canoura, Juan and Yang, Kyung-Ae and Xiao, Yi
Journal: Nucleic acids research (2018): e43
Programmed Synthesis by Stimuli-Responsive DNAzyme-Modified Mesoporous SiO2 Nanoparticles.
Authors: Balogh, Dora and Aleman Garcia, Miguel Angel and Albada, H Bauke and Willner, Itamar
Journal: Angewandte Chemie (International ed. in English) (2015): 11652-6
Ternary complexes with core-shell bilayer for double level targeted gene delivery: in vitro and in vivo evaluation.
Authors: Fan, Ying and Yao, Jing and Du, Ronghui and Hou, Lin and Zhou, Jianping and Lu, Yun and Meng, Qinggang and Zhang, Qiang
Journal: Pharmaceutical research (2013): 1215-27
Achieving effective terminal exciton delivery in quantum dot antenna-sensitized multistep DNA photonic wires.
Authors: Spillmann, Christopher M and Ancona, Mario G and Buckhout-White, Susan and Algar, W Russ and Stewart, Michael H and Susumu, Kimihiro and Huston, Alan L and Goldman, Ellen R and Medintz, Igor L
Journal: ACS nano (2013): 7101-18