Actively helping customers, employees and the global community during the coronavirus SARS-CoV-2 outbreak.  Learn more >>

TMRE [Tetramethylrhodamine ethyl ester] *CAS#: 115532-52-0*

<strong>CcO inhibition and PTM induce mitochondrial dysfunction. </strong>(A) Mitochondrial membrane potential enumerated by TMRE dye uptake and cellular superoxide levels by nuclear DHE staining in B16F10 cells following 3 h treatment with NaN<sub>3</sub>. (B) Quantification of fluorescence intensity from (A). (C) Mitochondrial membrane potential enumerated by TMRE dye uptake and cellular superoxide levels by nuclear DHE staining in B16F10 cells following 3 h treatment with KCN. (D) Quantification of fluorescence intensity from (C,E) Cellular ATP levels following 2 h treatment with NaN<sub>3</sub> and PTM. (F) Cellular ATP levels following 2 h treatment with KCN and PTM. Scale bar: 100 µm Data are mean + SEM from three independent experiments. Source: <strong>Cytochrome C oxidase Inhibition and Cold Plasma-derived Oxidants Synergize in Melanoma Cell Death Induction</strong> by Gandhirajan et al., <em>Scientific Reports</em>, Aug. 2018.
<strong>CcO inhibition and PTM induce mitochondrial dysfunction. </strong>(A) Mitochondrial membrane potential enumerated by TMRE dye uptake and cellular superoxide levels by nuclear DHE staining in B16F10 cells following 3 h treatment with NaN<sub>3</sub>. (B) Quantification of fluorescence intensity from (A). (C) Mitochondrial membrane potential enumerated by TMRE dye uptake and cellular superoxide levels by nuclear DHE staining in B16F10 cells following 3 h treatment with KCN. (D) Quantification of fluorescence intensity from (C,E) Cellular ATP levels following 2 h treatment with NaN<sub>3</sub> and PTM. (F) Cellular ATP levels following 2 h treatment with KCN and PTM. Scale bar: 100 µm Data are mean + SEM from three independent experiments. Source: <strong>Cytochrome C oxidase Inhibition and Cold Plasma-derived Oxidants Synergize in Melanoma Cell Death Induction</strong> by Gandhirajan et al., <em>Scientific Reports</em>, Aug. 2018.
Chemical structure for TMRE [Tetramethylrhodamine ethyl ester] *CAS#: 115532-52-0*
Ordering information
Price ()
Catalog Number22220
Unit Size
Find Distributor
Additional ordering information
Telephone1-408-733-1055
Fax1-408-733-1304
Emailsales@aatbio.com
InternationalSee distributors
ShippingStandard overnight for United States, inquire for international
Physical properties
Molecular weight514.95
SolventDMSO
Spectral properties
Correction Factor (260 nm)0.27
Correction Factor (280 nm)0.03
Excitation (nm)552
Emission (nm)574
Storage, safety and handling
Certificate of OriginDownload PDF
H-phraseH303, H313, H333
Hazard symbolXN
Intended useResearch Use Only (RUO)
R-phraseR20, R21, R22
StorageFreeze (< -15 °C); Minimize light exposure
UNSPSC12352200

OverviewpdfSDSpdfProtocol


CAS
115532-52-0
Molecular weight
514.95
Correction Factor (260 nm)
0.27
Correction Factor (280 nm)
0.03
Excitation (nm)
552
Emission (nm)
574
Positively charged rhodamine dyes (such as rhodamine esters and rosamines) are selectively localized in mitochondria, thus they are widely used for labeling mitochondria of live cells. Like JC-1, TMRM and TMRE are widely used for measuring mitochondrial membrane potential besides their selective mitochondrial staining. These two particular rhodamine esters stain mitochondria orange in fluorescence. Their spectral properties are similar to those of TRITC, making the use of TMRM and TMRE quite convenient. TMRE is slightly more hydrophobic than TMRM.

Calculators


Common stock solution preparation

Table 1. Volume of DMSO needed to reconstitute specific mass of TMRE [Tetramethylrhodamine ethyl ester] *CAS#: 115532-52-0* to given concentration. Note that volume is only for preparing stock solution. Refer to sample experimental protocol for appropriate experimental/physiological buffers.

0.1 mg0.5 mg1 mg5 mg10 mg
1 mM194.194 µL970.968 µL1.942 mL9.71 mL19.419 mL
5 mM38.839 µL194.194 µL388.387 µL1.942 mL3.884 mL
10 mM19.419 µL97.097 µL194.194 µL970.968 µL1.942 mL

Molarity calculator

Enter any two values (mass, volume, concentration) to calculate the third.

Mass (Calculate)Molecular weightVolume (Calculate)Concentration (Calculate)Moles
/=x=

Spectrum


Open in Advanced Spectrum Viewer
spectrum

Spectral properties

Correction Factor (260 nm)0.27
Correction Factor (280 nm)0.03
Excitation (nm)552
Emission (nm)574

Citations


View all 12 citations: Citation Explorer
Metformin dampens cisplatin cytotoxicity on leukemia cells after incorporation into cubosomal nanoformulation
Authors: Saber, Mona M and Al-mahallawi, Abdulaziz M and Stork, Bj{\"o}rn
Journal: Biomedicine \& Pharmacotherapy (2021): 112140
The amino acid metabolism is essential for evading physical plasma-induced tumour cell death
Authors: Gandhirajan, Rajesh Kumar and Meyer, Dorothee and Sagwal, Sanjeev Kumar and Weltmann, Klaus-Dieter and von Woedtke, Thomas and Bekeschus, Sander
Journal: British journal of cancer (2021): 1854--1863
Cytotoxicity, mitochondrial impairment, DNA damage and associated mechanisms induced by tris (1, 3-dichloro-2-propyl) phosphate and tris (2-butoxyethyl) phosphate in A549 cells
Authors: Yuan, Shengwu and Ma, Mei and Zhu, Xiaoshan and Han, Yingnan and Rao, Kaifeng and Wang, Zijian
Journal: Science of The Total Environment (2021): 147668
PINK1-mediated mitophagy maintains pluripotency through optineurin
Authors: Wang, Chaoqun and Liu, Kun and Cao, Jiani and Wang, Liang and Zhao, Qian and Li, Zheng and Zhang, Honghai and Chen, Quan and Zhao, Tongbiao
Journal: Cell Proliferation (2021): e13034
Ronin governs the metabolic capacity of the embryonic lineage for post-implantation development
Authors: Salewskij, Kirill and Gross-Thebing, Theresa and Ing-Simmons, Elizabeth and Duethorn, Binyamin and Rieger, Bettina and Fan, Rui and Chen, Rui and Govindasamy, Niraimathi and Brinkmann, Heike and Kremer, Ludmila and others,
Journal: EMBO reports (2021): e53048
In vitro oxidative stress, mitochondrial impairment and G1 phase cell cycle arrest induced by alkyl-phosphorus-containing flame retardants
Authors: Yuan, Shengwu and Zhu, Kongrui and Ma, Mei and Zhu, Xiaoshan and Rao, Kaifeng and Wang, Zijian
Journal: Chemosphere (2020): 126026
Spermidine alleviates cardiac aging by improving mitochondrial biogenesis and function
Authors: Wang, Junying and Li, Shaoqi and Wang, Ju and Wu, Feixiang and Chen, Yuhan and Zhang, Hao and Guo, Yubo and Lin, Yan and Li, Lingxu and Yu, Xue and others,
Journal: Aging (Albany NY) (2020): 650
Aryl-phosphorus-containing flame retardants induce oxidative stress, the p53-dependent DNA damage response and mitochondrial impairment in A549 cells
Authors: Yuan, Shengwu and Han, Yingnan and Ma, Mei and Rao, Kaifeng and Wang, Zijian and Yang, Rong and Liu, Yihong and Zhou, Xiaohong
Journal: Environmental Pollution (2019)
The mycotoxin phomoxanthone A disturbs the form and function of the inner mitochondrial membrane
Authors: B{\"o}hler, Philip and Stuhldreier, Fabian and Anand, Ruchika and Kondadi, Arun Kumar and Schl{\"u}termann, David and Berleth, Niklas and Deitersen, Jana and Wallot-Hieke, Nora and Wu, Wenxian and Frank, Marian and others,
Journal: Cell death \& disease (2018): 1--17
Cytochrome C oxidase Inhibition and Cold Plasma-derived Oxidants Synergize in Melanoma Cell Death Induction
Authors: G, undefined and hirajan, Rajesh Kumar and Rödder, Katrin and Bodnar, Yana and Pasqual-Melo, Gabriella and Emmert, Steffen and Griguer, Corinne E and Weltmann, Klaus-Dieter and Bekeschus, S and er, undefined
Journal: Scientific reports (2018): 12734

References


View all 73 references: Citation Explorer
CRYAB and HSPB2 deficiency increases myocyte mitochondrial permeability transition and mitochondrial calcium uptake
Authors: Kadono T, Zhang XQ, Srinivasan S, Ishida H, Barry WH, Benjamin IJ.
Journal: J Mol Cell Cardiol (2006): 783
Dystrophin is a possible end-target of ischemic preconditioning against cardiomyocyte oncosis during the early phase of reperfusion
Authors: Kyoi S, Otani H, Hamano A, Matsuhisa S, Akita Y, Fujiwara H, Hattori R, Imamura H, Kamihata H, Iwasaka T.
Journal: Cardiovasc Res (2006): 354
Adaphostin and other anticancer drugs quench the fluorescence of mitochondrial potential probes
Authors: Le SB, Holmuhamedov EL, Narayanan VL, Sausville EA, Kaufmann SH.
Journal: Cell Death Differ (2006): 151
Evaluation of the reactivity of apoptosis markers before and after cryopreservation in cord blood CD34(+) cells
Authors: Greco NJ, Seetharaman S, Kurtz J, Lee WR, Moroff G.
Journal: Stem Cells Dev (2006): 124
Overexpression of inducible heat shock protein 70 and its mutants in astrocytes is associated with maintenance of mitochondrial physiology during glucose deprivation stress
Authors: Ouyang YB, Xu LJ, Sun YJ, Giffard RG.
Journal: Cell Stress Chaperones (2006): 180
Fatty acid ethyl esters cause pancreatic calcium toxicity via inositol trisphosphate receptors and loss of ATP synthesis
Authors: Criddle DN, Murphy J, Fistetto G, Barrow S, Tepikin AV, Neoptolemos JP, Sutton R, Petersen OH.
Journal: Gastroenterology (2006): 781
NECA at reperfusion limits infarction and inhibits formation of the mitochondrial permeability transition pore by activating p70S6 kinase
Authors: Forster K, Paul I, Solenkova N, Staudt A, Cohen MV, Downey JM, Felix SB, Krieg T.
Journal: Basic Res Cardiol (2006): 319
Serofendic acid, a neuroprotective substance derived from fetal calf serum, inhibits mitochondrial membrane depolarization and caspase-3 activation
Authors: Kume T, Taguchi R, Katsuki H, Akao M, Sugimoto H, Kaneko S, Akaike A.
Journal: Eur J Pharmacol (2006): 69
High concordance of drug-induced human hepatotoxicity with in vitro cytotoxicity measured in a novel cell-based model using high content screening
Authors: O'Brien P J, Irwin W, Diaz D, Howard-Cofield E, Krejsa CM, Slaughter MR, Gao B, Kaludercic N, Angeline A, Bernardi P, Brain P, Hougham C.
Journal: Arch Toxicol (2006): 580
Mitochondrial Ca2+ uptake during simulated ischemia does not affect permeability transition pore opening upon simulated reperfusion
Authors: Ruiz-Meana M, Garcia-Dorado D, Miro-Casas E, Abellan A, Soler-Soler J.
Journal: Cardiovasc Res (2006): 715