logo
AAT Bioquest

Z-DEVD-ProRed™ 620

Related catalogs
ProRed™-derived protease substrates are colorless and non-fluorescent. Cleavage of blocking protease-cleavable peptide residue by caspases generates the strongly red fluorescent ProRed™ that can be monitored fluorimetrically at ~620 nm with excitation of ~530 nm. ProRed™-derived caspase substrates are the most sensitive red indicators for the fluorimetric detection of various caspase activities. This DEVD-ProRed™ substrate is specific for detecting caspases 3 and 7.
Detection of Caspase 3/7 Activities in Jurkat cells. <br />Jurkat cells were seeded on the same day at 200,000 cells/90 uL/well in a Costar black wall/clear bottom 96-well plate. The cells were treated with staurosporine at the final concentration of 1 uM for 5 hours while the untreated cells were used as control. The Z-DEVD-ProRed&trade; 620 assay solution (100 uL/well) was added and incubated at room temperature for 1 hour. The fluorescence intensity was measured at Ex/Em = 540/620 nm with FlexStation fluorescence microplate reader (Molecular Devices).
Detection of Caspase 3/7 Activities in Jurkat cells. <br />Jurkat cells were seeded on the same day at 200,000 cells/90 uL/well in a Costar black wall/clear bottom 96-well plate. The cells were treated with staurosporine at the final concentration of 1 uM for 5 hours while the untreated cells were used as control. The Z-DEVD-ProRed&trade; 620 assay solution (100 uL/well) was added and incubated at room temperature for 1 hour. The fluorescence intensity was measured at Ex/Em = 540/620 nm with FlexStation fluorescence microplate reader (Molecular Devices).
Detection of Caspase 3/7 Activities in Jurkat cells. <br />Jurkat cells were seeded on the same day at 200,000 cells/90 uL/well in a Costar black wall/clear bottom 96-well plate. The cells were treated with staurosporine at the final concentration of 1 uM for 5 hours while the untreated cells were used as control. The Z-DEVD-ProRed&trade; 620 assay solution (100 uL/well) was added and incubated at room temperature for 1 hour. The fluorescence intensity was measured at Ex/Em = 540/620 nm with FlexStation fluorescence microplate reader (Molecular Devices).
Ordering information
Price
Unit size
Catalog Number13433
Quantity
Add to cart
Additional ordering information
Telephone1-800-990-8053
Fax1-800-609-2943
Emailsales@aatbio.com
InternationalSee distributors
Bulk requestInquire
Custom sizeInquire
ShippingStandard overnight for United States, inquire for international
Request quotation
Physical properties
Molecular weight1565.50
SolventDMSO
Spectral properties
Excitation (nm)532
Emission (nm)619
Storage, safety and handling
H-phraseH303, H313, H333
Hazard symbolXN
Intended useResearch Use Only (RUO)
R-phraseR20, R21, R22
StorageFreeze (< -15 °C); Minimize light exposure
UNSPSC12352200
Example protocol

AT A GLANCE

Important notes
It is important to store at <-15 °C and should be stored in cool, dark place.

It can be used within 12 months from the date of receipt. 

PREPARATION OF STOCK SOLUTION

Unless otherwise noted, all unused stock solutions should be divided into single-use aliquots and stored at -20 °C after preparation. Avoid repeated freeze-thaw cycles.

1. Z-DEVD-ProredTM 620 stock solution (10 mM):
Add 65 µL of DMSO into the vial of 1 mg Z-DEVD-ProredTM 620 to make 10 mM stock solution.

PREPARATION OF WORKING SOLUTION

Caspase 3/7 assay solution (2X):
Mix 50 µL Z-DEVD-ProRed™ 620 stock solution (10 mM), 100 µL DTT (1M), 400 µL EDTA (100 mM) and 10 mL Tris Buffer (20 mM), pH =7.4.

SAMPLE EXPERIMENTAL PROTOCOL

  1. Mix equal volume of the caspase 3/7 standards or samples with 2X caspase 3/7 assay reaction solution and incubate at room temperature for at least 1 hour.

  2. Monitor the fluorescence increase at Ex/Em = 535/620 nm.
Calculators

Common stock solution preparation

Table 1. Volume of DMSO needed to reconstitute specific mass of Z-DEVD-ProRed™ 620 to given concentration. Note that volume is only for preparing stock solution. Refer to sample experimental protocol for appropriate experimental/physiological buffers.

0.1 mg0.5 mg1 mg5 mg10 mg
1 mM63.877 µL319.387 µL638.774 µL3.194 mL6.388 mL
5 mM12.775 µL63.877 µL127.755 µL638.774 µL1.278 mL
10 mM6.388 µL31.939 µL63.877 µL319.387 µL638.774 µL

Molarity calculator

Enter any two values (mass, volume, concentration) to calculate the third.

Mass (Calculate)Molecular weightVolume (Calculate)Concentration (Calculate)Moles
/=x=
Spectrum
Product family
NameExcitation (nm)Emission (nm)
Z-IETD-ProRed™ 620532619
Z-LEHD-ProRed™ 620532619
Citations
View all 2 citations: Citation Explorer
Degenerin channel activation causes caspase-mediated protein degradation and mitochondrial dysfunction in adult C. elegans muscle
Authors: Gaffney, Christopher J and Shephard, Freya and Chu, Jeff and Baillie, David L and Rose, Ann and Constantin-Teodosiu, Dumitru and Greenhaff, Paul L and Szewczyk, Nathaniel J
Journal: Journal of cachexia, sarcopenia and muscle (2016): 181--192
Degenerin channel activation causes caspase-mediated protein degradation and mitochondrial dysfunction in adult C. elegans muscle
Authors: Gaffney, Christopher J and Shephard, Freya and Chu, Jeff and Baillie, David L and Rose, Ann and Constantin-Teodosiu, Dumitru and Greenhaff, Paul L and Szewczyk, Nathaniel J
Journal: Journal of Cachexia, Sarcopenia and Muscle (2015)
References
View all 101 references: Citation Explorer
Fisetin induces apoptosis in human cervical cancer HeLa cells through ERK1/2-mediated activation of caspase-8-/caspase-3-dependent pathway
Authors: Ying TH, Yang SF, Tsai SJ, Hsieh SC, Huang YC, Bau DT, Hsieh YH.
Journal: Arch Toxicol (2012): 263
Andrographolide induces apoptosis in B16F-10 melanoma cells by inhibiting NF-kappaB-mediated bcl-2 activation and modulating p53-induced caspase-3 gene expression
Authors: Pratheeshkumar P, Sheeja K, Kuttan G.
Journal: Immunopharmacol Immunotoxicol (2012): 143
ECRG4 is a negative regulator of caspase-8-mediated apoptosis in human T-leukemia cells
Authors: Matsuzaki J, Torigoe T, Hirohashi Y, Kamiguchi K, Tamura Y, Tsukahara T, Kubo T, Takahashi A, Nakazawa E, Saka E, Yasuda K, Takahashi S, Sato N.
Journal: Carcinogenesis (2012): 996
Proteasome inhibition can impair caspase-8 Activation upon sub-maximal Stimulation of apoptotic tumour necrosis factor-related apoptosis inducing ligand (TRAIL) signalling
Authors: Laussmann MA, Passante E, Hellwig CT, Tomiczek B, Flanagan L, Prehn JH, Huber HJ, Rehm M.
Journal: J Biol Chem. (2012)
Caspase-2 is an initiator caspase responsible for pore-forming toxin-mediated apoptosis
Authors: Imre G, Heering J, Takeda AN, Husmann M, Thiede B, Zu Heringdorf DM, Green DR, van der Goot FG, Sinha B, Dotsch V, Rajalingam K.
Journal: EMBO J. (2012)