logo
AAT Bioquest

FMOC-Lys(5/6-FAM)-OH

FMOC-Lys(5/6-FAM)-OH is a building block for in-sequence Lys labeling by FAM. FAM is one of the most common donor dyes for preparing FRET peptides (often paired with TAMRA or TQ2).
Product Image
Product Image
Gallery Image 1
Ordering information
Price
Unit size
Catalog Number5042
Quantity
Add to cart
Additional ordering information
Telephone1-800-990-8053
Fax1-800-609-2943
Emailsales@aatbio.com
InternationalSee distributors
Bulk requestInquire
Custom sizeInquire
ShippingStandard overnight for United States, inquire for international
Request quotation
Physical properties
Molecular weight726.73
SolventDMF
Spectral properties
Correction Factor (260 nm)0.32
Correction Factor (280 nm)0.178
Extinction coefficient (cm -1 M -1)83000
Excitation (nm)493
Emission (nm)517
Storage, safety and handling
H-phraseH303, H313, H333
Hazard symbolXN
Intended useResearch Use Only (RUO)
R-phraseR20, R21, R22
StorageFreeze (< -15 °C); Minimize light exposure
UNSPSC12171501
Calculators

Common stock solution preparation

Table 1. Volume of DMF needed to reconstitute specific mass of FMOC-Lys(5/6-FAM)-OH to given concentration. Note that volume is only for preparing stock solution. Refer to sample experimental protocol for appropriate experimental/physiological buffers.

0.1 mg0.5 mg1 mg5 mg10 mg
1 mM137.603 µL688.013 µL1.376 mL6.88 mL13.76 mL
5 mM27.521 µL137.603 µL275.205 µL1.376 mL2.752 mL
10 mM13.76 µL68.801 µL137.603 µL688.013 µL1.376 mL

Molarity calculator

Enter any two values (mass, volume, concentration) to calculate the third.

Mass (Calculate)Molecular weightVolume (Calculate)Concentration (Calculate)Moles
/=x=
Spectrum
Product family
NameExcitation (nm)Emission (nm)Extinction coefficient (cm -1 M -1)Correction Factor (260 nm)Correction Factor (280 nm)
FMOC-Asp(5/6-FAM)-OH493517830000.320.178
FMOC-Glu(5/6-FAM)-OH493517830000.320.178
FMOC-Lys(5/6-TAMRA)-OH552578900000.320.178
Citations
View all 5 citations: Citation Explorer
Single-step purification of a small non-mAb biologic by peptide-ELP-based affinity precipitation
Authors: Mullerpatan, Akshat and Kane, Erin and Ghosh, Ronit and Nascimento, Andr{\'e} and Andersen, Henrik and Cramer, Steven and Karande, Pankaj
Journal: Biotechnology and Bioengineering (2020): 3775--3784
Pharmacophore Generation from a Drug-like Core Molecule Surrounded by a Library Peptide via the 10BASEd-T on Bacteriophage T7
Authors: Tokunaga, Yuuki and Azetsu, Yuuki and Fukunaga, Keisuke and Hatanaka, Takaaki and Ito, Yuji and Taki, Masumi
Journal: Molecules (2014): 2481--2496
Site-specific C-terminal and internal loop labeling of proteins using sortase-mediated reactions
Authors: Guimaraes, Carla P and Witte, Martin D and Theile, Christopher S and Bozkurt, Gunes and Kundrat, Lenka and Blom, Annet EM and Ploegh, Hidde L
Journal: Nature protocols (2013): 1787--1799
References
View all 16 references: Citation Explorer
Profiling the substrate specificity of viral protease VP4 by a FRET-based peptide library approach
Authors: Ekici OD, Zhu J, Wah Chung IY, Paetzel M, Dalbey RE, Pei D.
Journal: Biochemistry (2009): 5753
A FRET-based assay for characterization of alternative splicing events using peptide nucleic acid fluorescence in situ hybridization
Authors: Blanco AM, Rausell L, Aguado B, Perez-Alonso M, Artero R.
Journal: Nucleic Acids Res (2009): e116
A 'turn-on' FRET peptide sensor based on the mercury binding protein MerP
Authors: White BR, Liljestr and HM, Holcombe JA.
Journal: Analyst (2008): 65
Unfolded protein and peptide dynamics investigated with single-molecule FRET and correlation spectroscopy from picoseconds to seconds
Authors: Nettels D, Hoffmann A, Schuler B.
Journal: J Phys Chem B (2008): 6137
Development of DNA aptamers to a foot-and-mouth disease peptide for competitive FRET-based detection
Authors: Bruno JG, Carrillo MP, Phillips T.
Journal: J Biomol Tech (2008): 109