logo
AAT Bioquest

JC-1 [5,5,6,6-Tetrachloro-1,1,3,3-tetraethylbenzimidazolylcarbocyanine iodide] *CAS#: 3520-43-2*

Product Image
Product Image
Gallery Image 1
Ordering information
Price
Catalog Number
Unit Size
Quantity
Add to cart
Additional ordering information
Telephone1-800-990-8053
Fax1-800-609-2943
Emailsales@aatbio.com
InternationalSee distributors
Bulk requestInquire
Custom sizeInquire
ShippingStandard overnight for United States, inquire for international
Request quotation
Physical properties
Molecular weight652.23
SolventDMSO
Spectral properties
Extinction coefficient (cm -1 M -1)1950001
Excitation (nm)515
Emission (nm)530
Storage, safety and handling
Certificate of OriginDownload PDF
H-phraseH303, H313, H333
Hazard symbolXN
Intended useResearch Use Only (RUO)
R-phraseR20, R21, R22
StorageFreeze (< -15 °C); Minimize light exposure
UNSPSC12352200

OverviewpdfSDSpdfProtocol


CAS
3520-43-2
Molecular weight
652.23
Extinction coefficient (cm -1 M -1)
1950001
Excitation (nm)
515
Emission (nm)
530
JC-1 is widely used for determining mitochondrial membrane potential with flow cytometry. It is capable of entering selectively into mitochondria, and changes reversibly its color from green to orange as membrane potentials increase (over values of about 80-100 mV). This property is due to the reversible formation of JC-1 aggregates upon membrane polarization that causes shifts in emitted light from 530 nm (i.e., emission of JC-1 monomeric form) to 590 nm (i.e., emission of J-aggregate). When excited at 490 nm, the color of JC-1 changes reversibly from green to greenish orange as the mitochondrial membrane becomes more polarized. Both colors can be detected using the filters commonly mounted in all flow cytometers, so that green emission can be analyzed in fluorescence channel 1 (FL1) and greenish orange emission in channel 2 (FL2). The main advantage of the use of JC-1 is that it can be both qualitative, considering the shift from green to orange fluorescence emission, and quantitative, considering the pure fluorescence intensity, which can be detected in both FL1 and FL2 channels. Besides its wide use with flow cytometry, it is also used in fluorescence imaging. We have developed a protocol to use it in fluorescence microplate platform. Although JC-1 is widely used in many labs, its poor water solubility makes it hard to use for some applications. Our JC-10 has much better water solubility than JC-1, and in some cell lines JC-10 has even superior performance to JC-1. Interestingly the performance of JC-10 is quite cell line-dependent.

Platform


Flow cytometer

Excitation488 nm laser
Emission530/30 nm, 575/26 nm filter
Instrument specification(s)FITC, PE channel

Fluorescence microscope

Excitation490 nm
Emission525 nm (590 nm for ratio analysis)
Recommended plateBlack wall/clear bottom
Instrument specification(s)FITC and TRITC filters

Fluorescence microplate reader

Excitation490 nm
Emission525 nm (590 nm for ratio analysis)
Recommended plateSolid black

Calculators


Common stock solution preparation

Table 1. Volume of DMSO needed to reconstitute specific mass of JC-1 [5,5,6,6-Tetrachloro-1,1,3,3-tetraethylbenzimidazolylcarbocyanine iodide] *CAS#: 3520-43-2* to given concentration. Note that volume is only for preparing stock solution. Refer to sample experimental protocol for appropriate experimental/physiological buffers.

0.1 mg0.5 mg1 mg5 mg10 mg
1 mM153.32 µL766.601 µL1.533 mL7.666 mL15.332 mL
5 mM30.664 µL153.32 µL306.64 µL1.533 mL3.066 mL
10 mM15.332 µL76.66 µL153.32 µL766.601 µL1.533 mL

Molarity calculator

Enter any two values (mass, volume, concentration) to calculate the third.

Mass (Calculate)Molecular weightVolume (Calculate)Concentration (Calculate)Moles
/=x=

Spectrum


Open in Advanced Spectrum Viewer
spectrum

Spectral properties

Extinction coefficient (cm -1 M -1)1950001
Excitation (nm)515
Emission (nm)530

Images


Citations


View all 32 citations: Citation Explorer
Autophagy-deficient macrophages exacerbate cisplatin-induced mitochondrial dysfunction and kidney injury via miR-195a-5p-SIRT3 axis
Authors: Yuan, Yujia and Yuan, Longhui and Yang, Jingchao and Liu, Fei and Liu, Shuyun and Li, Lan and Liao, Guangneng and Tang, Xi and Cheng, Jingqiu and Liu, Jingping and others,
Journal: Nature Communications (2024): 4383
Palmitic Acid Exerts Anti-Tumorigenic Activities by Modulating Cellular Stress and Lipid Droplet Formation in Endometrial Cancer
Authors: Zhao, Ziyi and Wang, Jiandong and Kong, Weimin and Newton, Meredith A and Burkett, Wesley C and Sun, Wenchuan and Buckingham, Lindsey and O’Donnell, Jillian and Suo, Hongyan and Deng, Boer and others,
Journal: Biomolecules (2024): 601
Ipatasertib, an oral AKT inhibitor, in combination with carboplatin exhibits anti-proliferative effects in uterine serous carcinoma
Authors: Burkett, Wesley C and Zhao, Ziyi and Newton, Meredith A and Sun, Wenchuan and Deng, Boer and Secord, Angeles Alvarez and Zhou, Chunxiao and Bae-Jump, Victoria
Journal: Annals of Medicine (2023): 603--614
Effects of icariin on NRG1-ErbB signaling pathways in hippocampus of schizophrenia rats
Authors: Liu, Yunqin and Lin, Li and Xiao, Wenhao and Ji, Qiuming and Liu, Yanqin
Journal: Chinese Journal of Tissue Engineering Research (2023): 3236
Microgravity-induced stress mechanisms in human stem cell-derived cardiomyocytes
Authors: Acharya, Aviseka and Nemade, Harshal and Papadopoulos, Symeon and Hescheler, J{\"u}rgen and Neumaier, Felix and Schneider, Toni and Prasad, Krishna Rajendra and Khan, Khadija and Hemmersbach, Ruth and Gusmao, Eduardo Gade and others,
Journal: Iscience (2022): 104577
Honokiol ameliorates cisplatin-induced acute kidney injury via inhibition of mitochondrial fission
Authors: Mao, Rui-wen and He, Shan-ping and Lan, Jun-gang and Zhu, Wu-zheng
Journal: British Journal of Pharmacology (2022)
Mitochondrial transfer from MSCs to macrophages restricts inflammation and alleviates kidney injury in diabetic nephropathy mice via PGC-1$\alpha$ activation
Authors: Yuan, Yujia and Yuan, Longhui and Li, Lan and Liu, Fei and Liu, Jingping and Chen, Younan and Cheng, Jingqiu and Lu, Yanrong
Journal: STEM CELLS (2021)
Ruxolitinib induces apoptosis of human colorectal cancer cells by downregulating the JAK1/2-STAT1-Mcl-1 axis
Authors: Li, Xia and Wang, Zhe and Zhang, Shengjie and Yao, Qinghua and Chen, Wei and Liu, Feiyan
Journal: Oncology letters (2021): 1--14
Pogostemon cablin Triggered ROS-Induced DNA damage to arrest cell cycle progression and induce apoptosis on human hepatocellular carcinoma in vitro and in vivo
Authors: Huang, Xiao-Fan and Sheu, Gwo-Tarng and Chang, Kai-Fu and Huang, Ya-Chih and Hung, Pei-Hsiu and Tsai, Nu-Man
Journal: Molecules (2020): 5639
Cotargeting the JAK/STAT signaling pathway and histone deacetylase by ruxolitinib and vorinostat elicits synergistic effects against myeloproliferative neoplasms
Authors: Hao, Xing and Xing, Wen and Yuan, Jiajia and Wang, Yingshao and Bai, Jiaojiao and Bai, Jie and Zhou, Yuan
Journal: Investigational new drugs (2019): 1--11