logo
AAT Bioquest

ATTO 610 alkyne

Product key features

  • Ex/Em: 615/632 nm
  • Extinction coefficient: 150,000 cm-1M-1
  • Reactive group: alkyne
  • Efficient Conjugation: Click chemistry labeling of azides on peptides, antibodies, and other biomolecules
  • High Quantum Yield & Stability: Offers bright, stable fluorescence with excellent photostability and thermal stability for sensitive imaging applications
  • Ideal for Super-Resolution Imaging: Suited for PALM, dSTORM, and STED techniques in high-resolution microscopy

Product description

ATTO 610 is a carbopyronin-based fluorescent dye known for its strong absorption, high fluorescence quantum yield, and exceptional photostability and thermal stability. It is moderately hydrophilic and optimally excited at wavelengths between 595 and 625 nm. Upon coupling to a substrate, ATTO 610 becomes cationic, carrying a net electrical charge of +1. The dye remains stable under physiological pH conditions and in buffers with a pH of up to 8, though it gradually degrades at higher pH levels. ATTO 610 is ideal for advanced applications in single-molecule detection and high-resolution microscopy techniques, including PALM, dSTORM, and STED microscopy. It is also compatible with flow cytometry (FACS), fluorescence in situ hybridization (FISH), FRET, and various other biological assays.

The alkyne derivative of ATTO 610 is widely used for labeling azides on peptides, antibodies, and other biomolecules via click chemistry. It participates in copper-catalyzed azide-alkyne cycloaddition (CuAAC) with azide-containing molecules.

Spectrum

References

View all 4 references: Citation Explorer
Two-Photon-Excited Single-Molecule Fluorescence Enhanced by Gold Nanorod Dimers.
Authors: Lu, Xuxing and Punj, Deep and Orrit, Michel
Journal: Nano letters (2022): 4215-4222
Ultrabright Terbium Nanoparticles for FRET Biosensing and in Situ Imaging of Epidermal Growth Factor Receptors*.
Authors: Charpentier, Cyrille and Cifliku, Vjona and Goetz, Joan and Nonat, Aline and Cheignon, Clémence and Cardoso Dos Santos, Marcelina and Francés-Soriano, Laura and Wong, Ka-Leung and Charbonnière, Loïc J and Hildebrandt, Niko
Journal: Chemistry (Weinheim an der Bergstrasse, Germany) (2020): 14602-14611
Oxazine dye-conjugated dna oligonucleotides: Förster resonance energy transfer in view of molecular dye-DNA interactions.
Authors: Kupstat, Annette and Ritschel, Thomas and Kumke, Michael U
Journal: Bioconjugate chemistry (2011): 2546-57
Novel wavelength-resolved fluorescence detection for a high-throughput capillary electrophoresis system under a diascopic configuration.
Authors: Lin, Shi-Wei and Chang, Guan-Liang and Lin, Che-Hsin
Journal: Journal of chromatography. A (2008): 198-201
Page updated on April 25, 2025

Ordering information

Price
Unit size
Catalog Number70254
Quantity
Add to cart

Additional ordering information

Telephone1-800-990-8053
Fax1-800-609-2943
Emailsales@aatbio.com
InternationalSee distributors
Bulk requestInquire
Custom sizeInquire
Technical SupportContact us
Purchase orderSend to sales@aatbio.com
ShippingStandard overnight for United States, inquire for international
Request quotation

Physical properties

Molecular weight

541.62

Solvent

DMSO

Spectral properties

Correction Factor (260 nm)

0.03

Correction Factor (280 nm)

0.06

Extinction coefficient (cm -1 M -1)

150000

Excitation (nm)

615

Emission (nm)

632

Quantum yield

0.70

Storage, safety and handling

Certificate of OriginDownload PDF
H-phraseH303, H313, H333
Hazard symbolXN
Intended useResearch Use Only (RUO)
R-phraseR20, R21, R22

Storage

Freeze (< -15 °C); Minimize light exposure
UNSPSC12352200
Product Image
Product Image
Gallery Image 1
Schematic illustrating the azide–alkyne cycloaddition (“click chemistry”) between an alkyne‐functionalized dye and an azide‐presenting biomolecule. In the presence of a copper catalyst (CuAAC) or under strain‐promoted conditions (SPAAC), the azide and alkyne react to form a stable 1,2,3‐triazole linkage. This highly selective and robust reaction proceeds under mild conditions, tolerates a wide range of functional groups, and is frequently used to label proteins, nucleic acids, and other biomolecules for imaging, proteomics, and high‐throughput assays.