logo
AAT Bioquest

ATTO 655 PEG4 DBCO

Product key features

  • Ex/Em: 661/679 nm
  • Extinction coefficient: 125,000 cm-1M-1
  • Reactive group: DBCO
  • Copper-Free Bioorthogonal Labeling: Efficient azide conjugation via SPAAC without copper, ideal for sensitive systems
  • High Quantum Yield & Stability: Provides bright fluorescence with high photostability and thermal resilience
  • Ozone-Resistant: Superior resistance to atmospheric ozone ensures reliable performance, ideal for microarray applications
  • Hydrophilic PEG4 Spacer: Enhances solubility and minimizes steric hindrance for enhanced biocompatibility

Product description

ATTO 655 PEG4 DBCO is manufactured by AAT Bioquest for research and development use. ATTO 655 is a far-red fluorescent dye characterized by its strong absorption, high photo and thermal stability, and excellent ozone resistance. The dye exhibits enhanced aqueous solubility due to the incorporation of a PEG4 spacer and is optimally excited within the 640-660 nm wavelength range, which aligns with the 647 nm line of Krypton-Ion lasers and the 650 nm line of diode lasers. As a zwitterionic compound, ATTO 655 remains electrically neutral when conjugated to biomolecules or other substrates. Its strong electron-accepting properties result in efficient fluorescence quenching by electron donors such as guanine and tryptophan. These properties render ATTO 655 highly suitable for precise applications including single-molecule detection and super-resolution microscopy techniques like PALM, dSTORM, and STED. Furthermore, ATTO 655 is compatible with flow cytometry (FACS), fluorescence in situ hybridization (FISH), and a variety of other biological assays, making it a versatile tool in advanced fluorescence-based research.

The PEG4-DBCO derivative of ATTO 655 is a highly reactive cycloalkyne optimized for copper-free click chemistry (SPAAC, strain-promoted azide-alkyne cycloaddition). This derivative exhibits a significantly higher reaction rate with azides compared to other cyclooctynes and copper-catalyzed click reactions (CuAAC). Uniquely, DBCO does not react with tetrazines, allowing for its use in bioorthogonal reactions alongside trans-cyclooctenes and tetrazines. For applications where the presence of copper is problematic, ATTO 655 PEG4 DBCO serves as an effective alternative to copper-dependent fluorescent alkynes.

Spectrum

Product family

NameExcitation (nm)Emission (nm)Extinction coefficient (cm -1 M -1)Quantum yieldCorrection Factor (260 nm)Correction Factor (280 nm)
ATTO 514 PEG4 DBCO510531115,0000.850.210.08
ATTO 532 PEG4 DBCO5315521150000.900.220.11
ATTO 594 PEG4 DBCO6026211200000.850.260.51
ATTO 647 PEG4 DBCO6466661200000.200.080.04
ATTO 647N PEG4 DBCO6456631500000.6510.060.05
ATTO 680 PEG4 DBCO6796961250000.300.300.17
ATTO 700 PEG4 DBCO6997151200000.250.260.41

References

View all 21 references: Citation Explorer
Defect-Engineered Metal-Organic Frameworks as Nanocarriers for Pharmacotherapy: Insights into Intracellular Dynamics at The Single Particle Level.
Authors: Huang, Ge and Dreisler, Marcus Winther and Kæstel-Hansen, Jacob and Nielsen, Annette Juma and Zhang, Min and Hatzakis, Nikos S
Journal: Advanced materials (Deerfield Beach, Fla.) (2024): e2405898
Confocal Microscopy to Measure Three Modes of Fusion Pore Dynamics in Adrenal Chromaffin Cells.
Authors: Han, Sue and Wang, Xin and Cordero, Nicholas and Wu, Ling-Gang
Journal: Journal of visualized experiments : JoVE (2022)
Measuring Photophysical Transition Rates with Fluorescence Correlation Spectroscopy and Antibunching.
Authors: Sakhapov, Damir and Gregor, Ingo and Karedla, Narain and Enderlein, Jörg
Journal: The journal of physical chemistry letters (2022): 4823-4830
Comparing lifeact and phalloidin for super-resolution imaging of actin in fixed cells.
Authors: Mazloom-Farsibaf, Hanieh and Farzam, Farzin and Fazel, Mohamadreza and Wester, Michael J and Meddens, Marjolein B M and Lidke, Keith A
Journal: PloS one (2021): e0246138
Structural Mechanism of the Arrestin-3/JNK3 Interaction.
Authors: Park, Ji Young and Qu, Chang-Xiu and Li, Rui-Rui and Yang, Fan and Yu, Xiao and Tian, Zhao-Mei and Shen, Yue-Mao and Cai, Bo-Yang and Yun, Youngjoo and Sun, Jin-Peng and Chung, Ka Young
Journal: Structure (London, England : 1993) (2019): 1162-1170.e3
Page updated on May 19, 2025

Ordering information

Price
Unit size
Catalog Number70285
Quantity
Add to cart

Additional ordering information

Telephone1-800-990-8053
Fax1-800-609-2943
Emailsales@aatbio.com
InternationalSee distributors
Bulk requestInquire
Custom sizeInquire
Technical SupportContact us
Purchase orderSend to sales@aatbio.com
ShippingStandard overnight for United States, inquire for international
Request quotation

Physical properties

Molecular weight

1033.25

Solvent

DMSO

Spectral properties

Correction Factor (260 nm)

0.24

Correction Factor (280 nm)

0.08

Extinction coefficient (cm -1 M -1)

125000

Excitation (nm)

661

Emission (nm)

679

Quantum yield

0.31

Storage, safety and handling

Certificate of OriginDownload PDF
H-phraseH303, H313, H333
Hazard symbolXN
Intended useResearch Use Only (RUO)
R-phraseR20, R21, R22

Storage

Freeze (< -15 °C); Minimize light exposure
UNSPSC12352200
Product Image
Product Image
Gallery Image 1
Schematic illustrating the strain‐promoted azide–alkyne cycloaddition (SPAAC) between a dibenzocyclooctyne (DBCO)–dye conjugate and an azide‐modified biomolecule. The DBCO’s ring strain drives the copper‐free reaction with the azide to form a stable 1,2,3-triazole linkage, avoiding potential toxicity of copper catalysts. This bioorthogonal labeling strategy proceeds efficiently under mild conditions, making it especially valuable for live‐cell imaging, in vivo studies, and other sensitive bioconjugation applications.