logo
Products
Technologies
Applications
Services
Resources
Selection Guides
About
Screen Quest™ Fluorimetric MDR Assay Kit
Tumor cell resistance to cytotoxic drugs is considered one of the major obstacles to successful chemotherapy. Some tumors are initially resistant and never respond to cytostatic drug treatment; others initially respond well but eventually regrow and become resistant. This phenomenon may result from genetic mutations induced by the administered antitumor agent, or may represent the selection of preexisting resistant cell populations in the malignant tumor. Multi-drug resistance (MDR) is a major factor in the failure of many forms of chemotherapy. In the past few years it has become widely accepted that the resistance to chemotherapy correlates with the overexpression of at least two ATP-dependent drug-efflux pumps. These cell membrane proteins, called P-glycoprotein (Pgp, MDR1), and multidrug-resistance-associated protein (MRP1) are members of the ABC transporter family. Our assay kit uses a fluorescent MDR indicator for assaying these two MDR pump activities. This hydrophobic fluorescent dye molecule rapidly penetrates cell membranes and becomes trapped in cells. Following a short incubation, the intracellular free dye concentration can increase significantly. In the MDR1 and/or MRP1-expressing cells this dye is extruded by the MDR transporter, thus decreasing the cellular fluorescence intensity. However, when its extrusion is blocked by an agent that interferes with the MDR1 and/or MRP1 pump-activity, its cellular fluorescence intensity increases significantly. Our MDR assay kit provides all the essential components with an optimized assay method. The assay can be performed in a convenient 96-well or 384-well microtiter-plate format and easily adapted to automation. This assay kit is ideal for high throughput screening of MDR pump inhibitors or identifying the cells that have high level of MDR pump activities.
Effect of Cyclosporin A on the inhibition of P-gp pump in MCF-7/ADR cells. The increased concentration of Cyclosporin A resulted in an increase in fluorescence signal caused by the inhibition of P-gp pump which enhanced the intracellular accumulation of MDR indicator dye. The EC50 = 2.4 μM (measured with the kit) is similar to the value reported in the literature.
Effect of Cyclosporin A on the inhibition of P-gp pump in MCF-7/ADR cells. The increased concentration of Cyclosporin A resulted in an increase in fluorescence signal caused by the inhibition of P-gp pump which enhanced the intracellular accumulation of MDR indicator dye. The EC50 = 2.4 μM (measured with the kit) is similar to the value reported in the literature.
CatalogSize
Price
Quantity
36340100 Tests
Price
363411000 Tests
Price
 
Storage, safety and handling

H-phraseH303, H313, H333
Hazard symbolXN
Intended useResearch Use Only (RUO)
R-phraseR20, R21, R22
UNSPSC12352200
Instrument settings

Fluorescence microplate reader
Excitation490 nm
Emission525 nm
Cutoff515 nm
Recommended plateBlack wall/clear bottom
Instrument specification(s)Bottom read mode
Contact us

Telephone
Fax
Emailsales@aatbio.com
InternationalSee distributors
Bulk requestInquire
Custom sizeInquire
Technical SupportContact us
Request quotationRequest
Purchase orderSend to sales@aatbio.com
ShippingStandard overnight for United States, inquire for international
Page updated on September 25, 2025