Actively helping customers, employees and the global community during the coronavirus SARS-CoV-2 outbreak.  Learn more >>
Actively helping customers, employees and the global community during the coronavirus SARS-CoV-2 outbreak.  Learn more >>
logo
AAT Bioquest

PE [R-Phycoerythrin] *CAS 11016-17-4*

Top) Spectral pattern was generated using a 4-laser spectral cytometer. Spatially offset lasers (355 nm, 405 nm, 488 nm, and 640 nm) were used to create four distinct emission profiles, then, when combined, yielded the overall spectral signature. Bottom) Flow cytometry analysis of PBMC stained with PE anti-human CD4 *SK3* conjugate. The fluorescence signal was monitored using an Aurora flow cytometer in the PE specific B6-A channel.
Top) Spectral pattern was generated using a 4-laser spectral cytometer. Spatially offset lasers (355 nm, 405 nm, 488 nm, and 640 nm) were used to create four distinct emission profiles, then, when combined, yielded the overall spectral signature. Bottom) Flow cytometry analysis of PBMC stained with PE anti-human CD4 *SK3* conjugate. The fluorescence signal was monitored using an Aurora flow cytometer in the PE specific B6-A channel.
Top) Spectral pattern was generated using a 4-laser spectral cytometer. Spatially offset lasers (355 nm, 405 nm, 488 nm, and 640 nm) were used to create four distinct emission profiles, then, when combined, yielded the overall spectral signature. Bottom) Flow cytometry analysis of PBMC stained with PE anti-human CD4 *SK3* conjugate. The fluorescence signal was monitored using an Aurora flow cytometer in the PE specific B6-A channel.
Flow cytometry analysis of whole blood stained with PE anti-human CD4 *SK3* conjugate. The fluorescence signal was monitored using an Aurora flow cytometer in the PE specific B4-A channel.
Phycoerythrin&nbsp;(PE) is a red protein-pigment&nbsp;complex from the light harvesting&nbsp;phycobiliprotein&nbsp;family, present in&nbsp;red algae&nbsp;and&nbsp;cryptophytes,&nbsp;accessory to the main&nbsp;chlorophyll&nbsp;pigments responsible for&nbsp;photosynthesis. Like all phycobiliproteins, it is composed of a protein part covalently binding&nbsp;chromophores&nbsp;called&nbsp;phycobilins. In the phycoerythrin family, the most known phycobilins are:&nbsp;phycoerythrobilin, the typical phycoerythrin acceptor chromophore, and sometimes&nbsp;phycourobilin. Phycoerythrins are composed of (&alpha;&beta;) monomers, usually organized in a disk-shaped&nbsp;trimer&nbsp;(&alpha;&beta;)<sub>3</sub>&nbsp;or&nbsp;hexamer&nbsp;(&alpha;&beta;)<sub>6</sub>&nbsp;(second one is the functional unit of the&nbsp;antenna rods). These typical complexes also contain a third type of subunit, the &gamma; chain. Phycobilin pigments have excellent fluorescent properties that are extremely useful for flow cytometry-based immunoassays.
Ordering information
Price
Catalog Number
Unit Size
Quantity
Add to cart
Additional ordering information
Telephone1-800-990-8053
Fax1-800-609-2943
Emailsales@aatbio.com
InternationalSee distributors
ShippingStandard overnight for United States, inquire for international
Physical properties
Molecular weight~240000
SolventWater
Spectral properties
Extinction coefficient (cm -1 M -1)1960000
Excitation (nm)566
Emission (nm)574
Quantum yield0.82
Storage, safety and handling
Certificate of OriginDownload PDF
H-phraseH303, H313, H333
Hazard symbolXN
Intended useResearch Use Only (RUO)
R-phraseR20, R21, R22
StorageRefrigerated (2-8 °C); Minimize light exposure
UNSPSC12171501

OverviewpdfSDSpdfProtocol


CAS
11016-17-4
Molecular weight
~240000
Extinction coefficient (cm -1 M -1)
1960000
Excitation (nm)
566
Emission (nm)
574
Quantum yield
0.82
R-Phycoerythrin (PE) is isolated from red algae. Its primary absorption peak is at 565 nm with secondary peaks at 496 and 545 nm. The relative prominence of the secondary peaks varies significantly among R-PEs from different species. PE has three types of subunits: alpha (20,000 daltons), beta (20,000 daltons) and gamma (30,000 daltons). The molecular weight of intact PE has been found to be about 240,000 daltons. The alpha subunit of PE contains only the phycoerythrobilin (PEB) chromophore, while beta and gamma subunits contain both PEB and phycourobilin (PUB). Variability in the absorption spectra of PEs from various species reflects differences in the PEB/PUB ratio of the subunits. PE and closely related B-PE are the most intensely fluorescent phycobiliproteins, with quantum efficiencies probably in excess of 90%, and its orange fluorescence is readily visible by eye in any moderately concentrated solution.

Spectrum


Open in Advanced Spectrum Viewer
spectrum

Spectral properties

Extinction coefficient (cm -1 M -1)1960000
Excitation (nm)566
Emission (nm)574
Quantum yield0.82

Images


Citations


View all 3 citations: Citation Explorer
CD169+ subcapsular sinus macrophage-derived microvesicles are associated with light zone follicular dendritic cells
Authors: Chen, Xin and Zheng, Yuhan and Liu, Siming and Yu, Wenjing and Liu, Zhiduo
Journal: European Journal of Immunology (2022): 1581--1594
Nanobubbles Containing sPD-1 and Ce6 Mediate Combination Immunotherapy and Suppress Hepatocellular Carcinoma in Mice
Authors: Tan, Yandi and Yang, Shiqi and Ma, Yao and Li, Jinlin and Xie, Qian and Liu, Chaoqi and Zhao, Yun
Journal: International Journal of Nanomedicine (2021): 3241
Morphological Changes Induced By Extremely Low-Frequency Electric Fields
Authors: Imani, Mahdi and Kazemi, Sepide and Saviz, Mehrdad and Farahm, undefined and , Leila and Sadeghi, Behnam and Faraji-dana, Reza
Journal: Bioelectromagnetics (2019)

References


View all 46 references: Citation Explorer
Chromophore attachment to phycobiliprotein beta-subunits: phycocyanobilin:cysteine-beta84 phycobiliprotein lyase activity of CpeS-like protein from Anabaena Sp. PCC7120
Authors: Zhao KH, Su P, Li J, Tu JM, Zhou M, Bubenzer C, Scheer H.
Journal: J Biol Chem (2006): 8573
Excitation energy transfer from phycobiliprotein to chlorophyll d in intact cells of Acaryochloris marina studied by time- and wavelength-resolved fluorescence spectroscopy
Authors: Petrasek Z, Schmitt FJ, Theiss C, Huyer J, Chen M, Larkum A, Eichler HJ, Kemnitz K, Eckert HJ.
Journal: Photochem Photobiol Sci (2005): 1016
Single-molecule spectroscopy selectively probes donor and acceptor chromophores in the phycobiliprotein allophycocyanin
Authors: Loos D, Cotlet M, De Schryver F, Habuchi S, Hofkens J.
Journal: Biophys J (2004): 2598
Isolation and characterisation of phycobiliprotein rich mutant of cyanobacterium Synechocystis sp
Authors: Prasanna R, Dhar DW, Dominic TK, Tiwari ON, Singh PK.
Journal: Acta Biol Hung (2003): 113
Evaluation of Tolypothrix germplasm for phycobiliprotein content
Authors: Prasanna R, Prasanna BM, Mohammadi SA, Singh PK.
Journal: Folia Microbiol (Praha) (2003): 59
Co-ordinated expression of phycobiliprotein operons in the chromatically adapting cyanobacterium Calothrix PCC 7601: a role for RcaD and RcaG
Authors: Noubir S, Luque I, Ochoa de Alda JA, Perewoska I, T and eau de Marsac N, Cobley JG, Houmard J.
Journal: Mol Microbiol (2002): 749
Phycobiliprotein genes of the marine photosynthetic prokaryote Prochlorococcus: evidence for rapid evolution of genetic heterogeneity
Authors: Ting CS, Rocap G, King J, Chisholm SW.
Journal: Microbiology (2001): 3171
Phycobiliprotein-Fab conjugates as probes for single particle fluorescence imaging
Authors: Triantafilou K, Triantafilou M, Wilson KM.
Journal: Cytometry (2000): 226
Novel activity of a phycobiliprotein lyase: both the attachment of phycocyanobilin and the isomerization to phycoviolobilin are catalyzed by the proteins PecE and PecF encoded by the phycoerythrocyanin operon
Authors: Zhao KH, Deng MG, Zheng M, Zhou M, Parbel A, Storf M, Meyer M, Strohmann B, Scheer H.
Journal: FEBS Lett (2000): 9
Phycobiliprotein and fluorescence immunological assay
Authors: Wu P., undefined
Journal: Sheng Li Ke Xue Jin Zhan (2000): 82