logo
AAT Bioquest

ReadiLink™ Biotin Nick Translation dsDNA Labeling Kit

Nick translation labeling of DNA starts with the creation of defects within the sequence of existing DNA double-helix molecules by cleavage of phosphodiester bonds with DNase along the backbone of one strand. Polymerase then repairs these nicks beginning with the removal of the adjacent nucleotide and the immediate filling back in of those gaps with new nucleotides from the added dNTP pool. As each new nucleotide is added, the polymerase leaves the 3′ OH group open, thus translating the nick toward the 5′ end. As the reaction sequence is repeated, the polymerase enzyme continues to remove existing nucleotides and replace them with new ones at the site of the new nick. The result of these reactions is numerous labeled and unlabeled nucleotides being incorporated as a complementary sequence along the length of each DNA strand, starting at the site of the original nick.
Nick translation labeling of DNA starts with the creation of defects within the sequence of existing DNA double-helix molecules by cleavage of phosphodiester bonds with DNase along the backbone of one strand. Polymerase then repairs these nicks beginning with the removal of the adjacent nucleotide and the immediate filling back in of those gaps with new nucleotides from the added dNTP pool. As each new nucleotide is added, the polymerase leaves the 3′ OH group open, thus translating the nick toward the 5′ end. As the reaction sequence is repeated, the polymerase enzyme continues to remove existing nucleotides and replace them with new ones at the site of the new nick. The result of these reactions is numerous labeled and unlabeled nucleotides being incorporated as a complementary sequence along the length of each DNA strand, starting at the site of the original nick.
Nick translation labeling of DNA starts with the creation of defects within the sequence of existing DNA double-helix molecules by cleavage of phosphodiester bonds with DNase along the backbone of one strand. Polymerase then repairs these nicks beginning with the removal of the adjacent nucleotide and the immediate filling back in of those gaps with new nucleotides from the added dNTP pool. As each new nucleotide is added, the polymerase leaves the 3′ OH group open, thus translating the nick toward the 5′ end. As the reaction sequence is repeated, the polymerase enzyme continues to remove existing nucleotides and replace them with new ones at the site of the new nick. The result of these reactions is numerous labeled and unlabeled nucleotides being incorporated as a complementary sequence along the length of each DNA strand, starting at the site of the original nick.
Verification of double stranded DNA labeling with ReadiLink™ Biotin Nick Translation dsDNA Labeling Kit. Double stranded DNA were labeled with ReadiLink™ Biotin Nick Translation dsDNA Labeling Kit with suggested ratios of Biotin-dUTP:dTTP, purified and then incubated with or without streptavidin before applied to agarose gel electrophoresis. Gel was stained with Gelite™ Safe DNA Gel Stain. Streptavidin caused a supershift of Biotin-labeled dsDNA while in the absence of streptavidin, shift was not obseved. Control samples (dsDNA) were also ran in the absence and presence of Streptavidin (SA).
Ordering information
Price
Catalog Number
Unit Size
Quantity
Add to cart
Additional ordering information
Telephone1-800-990-8053
Fax1-800-609-2943
Emailsales@aatbio.com
InternationalSee distributors
Bulk requestInquire
Custom sizeInquire
ShippingStandard overnight for United States, inquire for international
Request quotation
Storage, safety and handling
H-phraseH303, H313, H333
Hazard symbolXN
Intended useResearch Use Only (RUO)
R-phraseR20, R21, R22
UNSPSC12171501
Related products
ReadiLink™ Rapid mFluor™ Violet 450 Antibody Labeling Kit *Microscale Optimized for Labeling 50 μg Antibody Per Reaction*
ReadiLink™ Rapid mFluor™ Violet 420 Antibody Labeling Kit *Microscale Optimized for Labeling 50 μg Antibody Per Reaction*
ReadiLink™ Rapid mFluor™ Violet 510 Antibody Labeling Kit *Microscale Optimized for Labeling 50 μg Antibody Per Reaction*
ReadiLink™ Rapid mFluor™ Violet 540 Antibody Labeling Kit *Microscale Optimized for Labeling 50 μg Antibody Per Reaction*
ReadiLink™ Rapid mFluor™ Blue 570 Antibody Labeling Kit *Microscale Optimized for Labeling 50 μg Antibody Per Reaction*
ReadiLink™ Rapid mFluor™ Green 620 Antibody Labeling Kit *Microscale Optimized for Labeling 50 μg Antibody Per Reaction*
ReadiLink™ Rapid mFluor™ Yellow 630 Antibody Labeling Kit *Microscale Optimized for Labeling 50 μg Antibody Per Reaction*
ReadiLink™ Rapid mFluor™ Red 700 Antibody Labeling Kit *Microscale Optimized for Labeling 50 μg Antibody Per Reaction*
ReadiLink™ Rapid mFluor™ Red 780 Antibody Labeling Kit *Microscale Optimized for Labeling 50 μg Antibody Per Reaction*
ReadiLink™ Rapid iFluor® 350 Antibody Labeling Kit *Microscale Optimized for Labeling 50 μg Antibody Per Reaction*
ReadiLink™ Rapid iFluor® 555 Antibody Labeling Kit *Microscale Optimized for Labeling 50 μg Antibody Per Reaction*
ReadiLink™ Rapid iFluor® 594 Antibody Labeling Kit *Microscale Optimized for Labeling 50 μg Antibody Per Reaction*
ReadiLink™ Rapid iFluor® 647 Antibody Labeling Kit *Microscale Optimized for Labeling 50 μg Antibody Per Reaction*
ReadiLink™ Rapid iFluor® 680 Antibody Labeling Kit *Microscale Optimized for Labeling 50 μg Antibody Per Reaction*
ReadiLink™ Rapid iFluor® 700 Antibody Labeling Kit *Microscale Optimized for Labeling 50 μg Antibody Per Reaction*
ReadiLink™ Rapid iFluor® 750 Antibody Labeling Kit *Microscale Optimized for Labeling 50 μg Antibody Per Reaction*
ReadiLink™ Rapid iFluor® 488 Antibody Labeling Kit *Microscale Optimized for Labeling 50 μg Antibody Per Reaction*
ReadiLink™ Rapid iFluor® 633 Antibody Labeling Kit *Microscale Optimized for Labeling 50 μg Antibody Per Reaction*
ReadiLink™ Rapid iFluor® 790 Antibody Labeling Kit *Microscale Optimized for Labeling 50 μg Antibody Per Reaction*
ReadiLink™ Rapid FITC Antibody Labeling Kit *Microscale Optimized for Labeling 50 μg Antibody Per Reaction*
ReadiLink™ Rapid trFluor™ Eu Antibody Labeling Kit *Microscale Optimized for Labeling 50 ug Antibody Per Reaction*
ReadiLink™ Rapid trFluor™ Tb Antibody Labeling Kit *Microscale Optimized for Labeling 50 ug Antibody Per Reaction*
ReadiLink™ Protein Conjugation Stop Buffer
ReadiLink™ BSA Conjugation Kit
ReadiLink™ KLH Conjugation Kit
ReadiLink™ Protein Biotinylation Kit
ReadiLink™ Protein Biotinylation Kit *Powered by ReadiView™ Biotin Visionization Technology*
ReadiLink™ Rapid Cy3 Antibody Labeling Kit *Microscale Optimized for Labeling 50 μg Antibody Per Reaction*
ReadiLink™ Rapid Cy5 Antibody Labeling Kit *Microscale Optimized for Labeling 50 μg Antibody Per Reaction*
ReadiLink™ Rapid Cy7 Antibody Labeling Kit *Microscale Optimized for Labeling 50 μg Antibody Per Reaction*
ReadiLink™ xtra Rapid iFluor® 350 Antibody Labeling Kit *BSA-Compatible*
ReadiLink™ xtra Rapid iFluor® 488 Antibody Labeling Kit *BSA-Compatible*
ReadiLink™ xtra Rapid iFluor® 555 Antibody Labeling Kit *BSA-Compatible*
ReadiLink™ xtra Rapid iFluor® 594 Antibody Labeling Kit *BSA-Compatible*
ReadiLink™ xtra Rapid iFluor® 647 Antibody Labeling Kit *BSA-Compatible*
ReadiLink™ xtra Rapid iFluor® 750 Antibody Labeling Kit *BSA-Compatible*
ReadiLink™ xtra Rapid FITC Antibody Labeling Kit *BSA-Compatible*
ReadiLink™ xtra Rapid Cy3 Antibody Labeling Kit *BSA-Compatible*
ReadiLink™ xtra Rapid Cy5 Antibody Labeling Kit *BSA-Compatible*
ReadiLink™ xtra Rapid Cy7 Antibody Labeling Kit *BSA-Compatible*
ReadiLink™ xtra Rapid XFD594 Antibody Labeling Kit *BSA-Compatible, XFD594 Same Structure to Alexa Fluor™ 594*
ReadiLink™ Rapid XFD488 Antibody Labeling Kit *XFD488 Same Structure to Alexa Fluor™ 488*
ReadiLink™ Rapid XFD555 Antibody Labeling Kit *XFD555 Same Structure to Alexa Fluor™ 555*
ReadiLink™ Rapid XFD594 Antibody Labeling Kit *XFD594 Same Structure to Alexa Fluor™ 594*
ReadiLink™ Rapid XFD647 Antibody Labeling Kit *XFD647 Same Structure to Alexa Fluor™ 647*
ReadiLink™ Rapid XFD750 Antibody Labeling Kit *XFD750 Same Structure to Alexa Fluor™ 750*
ReadiLink™ iFluor® 488 Nick Translation dsDNA Labeling Kit
ReadiLink™ iFluor® 555 Nick Translation dsDNA Labeling Kit
ReadiLink™ iFluor® 647 Nick Translation dsDNA Labeling Kit
ReadiLink™ DIG (Digoxigenin) Nick Translation dsDNA Labeling Kit
ReadiLink™ iFluor® 488 Oligo and ssDNA Labeling Kit
ReadiLink™ iFluor® 555 Oligo and ssDNA Labeling Kit
ReadiLink™ iFluor® 647 Oligo and ssDNA Labeling Kit
ReadiLink™ Cy3 Oligo and ssDNA Labeling Kit
ReadiLink™ Cy5 Oligo and ssDNA Labeling Kit
ReadiLink™ Biotin Oligo and ssDNA Labeling Kit
ReadiLink™ DIG (Digoxigenin) Oligo and ssDNA Labeling Kit
ReadiLink™ xtra Rapid XFD488 Antibody Labeling Kit *BSA-Compatible, XFD488 Same Structure to Alexa Fluor™ 488*
ReadiLink™ xtra Rapid XFD555 Antibody Labeling Kit *BSA-Compatible, XFD555 Same Structure to Alexa Fluor™ 555*
ReadiLink™ xtra Rapid XFD647 Antibody Labeling Kit *BSA-Compatible, XFD647 Same Structure to Alexa Fluor™ 647*
ReadiLink™ xtra Rapid XFD750 Antibody Labeling Kit *BSA-Compatible, XFD750 Same Structure to Alexa Fluor™ 750*
ReadiLink™ iFluor® 488 FISH Fluorescence Imaging Kit
ReadiLink™ iFluor® 555 FISH Fluorescence Imaging Kit
ReadiLink™ iFluor® 647 FISH Fluorescence Imaging Kit
ReadiLink™ Rapid iFluor® 350 Antibody Labeling Kit *Production Scale*
ReadiLink™ Rapid iFluor® 488 Antibody Labeling Kit *Production Scale*
ReadiLink™ Rapid iFluor® 555 Antibody Labeling Kit *Production Scale*
ReadiLink™ Rapid iFluor® 594 Antibody Labeling Kit *Production Scale*
ReadiLink™ Rapid iFluor® 647 Antibody Labeling Kit *Production Scale*
ReadiLink™ Rapid iFluor® 750 Antibody Labeling Kit *Production Scale*
ReadiLink™ Rapid FITC Antibody Labeling Kit *Production Scale*
ReadiLink™ Rapid Cy3 Antibody Labeling Kit *Production Scale*
ReadiLink™ Rapid Cy5 Antibody Labeling Kit *Production Scale*
ReadiLink™ Rapid XFD488 Antibody Labeling Kit *Production Scale*
ReadiLink™ Rapid XFD555 Antibody Labeling Kit *Production Scale*
ReadiLink™ Rapid XFD594 Antibody Labeling Kit *Production Scale*
ReadiLink™ Rapid Cy7 Antibody Labeling Kit *Production Scale*
ReadiLink™ Rapid XFD647 Antibody Labeling Kit *Production Scale*
ReadiLink™ Rapid XFD750 Antibody Labeling Kit *Production Scale*
ReadiLink™ Psoralen-A17-Biotin
ReadiLink™ Rapid mFluor™ Violet 610 Antibody Labeling Kit *Microscale Optimized for Labeling 50 µg Antibody Per Reaction*
Biotin *CAS 58-85-5*
Biotin, succinimidyl ester *CAS 35013-72-0*
Biotin ethylenediamine *CAS 1217450-40-2*
Biotin cadaverine
Biotin C2 maleimide
Biotin-4-fluorescein *CAS 1032732-74-3*
Biotin hydrazide *CAS 66640-86-6*
Biotin-X NTA [Biotin-X nitrilotriacetic acid, potassium salt] *CAS 856661-92-2*
Biotin-X, succinimidyl ester *CAS 72040-63-2*
Biotin PEG2 amine *CAS 138529-46-1*
Biotin PEG2 maleimide *CAS 305372-39-8*
Biotin PEG2 succinimidyl ester
Biotin-PEG3-azide *CAS 875770-34-6*
Biotin Azide
Biotin Alkyne *CAS 773888-45-2*
Biotin PEG4 succinimidyl ester
ReadiView™ biotin acid
ReadiView™ biotin amine
ReadiView™ biotin hydrazide
ReadiView™ biotin maleimide
ReadiView™ biotin succinimidyl ester
Amplite® Colorimetric Biotin Quantitation Kit
Biotin-11-dUTP *1 mM in Tris Buffer (pH 7.5)* *CAS 86303-25-5*
Biotin-16-dUTP *1 mM in Tris Buffer (pH 7.5)* *CAS 136632-31-0*
Biotin-20-dUTP *1 mM in Tris Buffer (pH 7.5)*
Cal-520®-Biotin Conjugate
Phalloidin-Biotin Conjugate
FMOC-Lys(Biotin)-OH
Biotin-14-dCTP *1 mM in Tris Buffer (pH 7.5)*
Biotin PEG3 amine
Annexin V-Biotin conjugate
N6-Methyladenosine-Biotin conjugate
Biotin Styramide *Superior Replacement for Biotin Tyramide*
Cy5 biotin conjugate
Biotin-cAMP conjugate
2',3'-cGAMP-Biotin conjugate
Cy5.5 biotin conjugate
Biotin-PEG4-tyramide
HRP-Biotin Conjugate
Biotin-11-dATP *1 mM in Tris Buffer (pH 7.5)*
Biotin-11-dGTP *1 mM in Tris Buffer (pH 7.5)*
Biotin NTA
Biotin-X IDA
ReadiCleave™ SSL biotin NHS ester
Biotin-dT Phosphoramidite
AF532 PEG4 biotin conjugate
Biotin PEG 4 Alkyne
Cy3 biotin conjugate
Cy7 biotin conjugate
Biotin C2 Azide
mFluor™ UV 375 Biotin Conjugate
mFluor™ UV 460 Biotin Conjugate
mFluor™ Violet 500 Biotin Conjugate
mFluor™ Violet 540 Biotin Conjugate
mFluor™ Red 780 Biotin Conjugate
Biotin Phosphoramidite
Bio-16-UTP [Biotin-16-UTP] *1 mM*
Biotin PEG4 amine
mFluor™ Violet 450-PEG4-Biotin Conjugate
Acridinium Biotin Conjugate
FastClick™ Biotin Azide
FastClick™ Biotin Alkyne
ReadiLeave™ Reversible Biotin Succinimidyl Ester
ReadiLeave™ Reversible Biotin Maleimide
ReadiLeave™ Reversible Biotin Azide
ReadiLeave™ Reversible Biotin Alkyne
ReadiLeave™ Reversible Biotin Amine
Xylazine-Biotin Conjugate
Show More (139)

OverviewpdfSDSpdfProtocol


ReadiLink™ Biotin Nick Translation dsDNA Labelling Kit provides a simple and efficient way to label a double stranded DNA sample with Biotin tag. The labelling kit provides all necessary reagents for a complete workflow required for DNA labelling. This method utilizes a combination of DNAse and DNA polymerase to nick one strand of the DNA helix, to which Biotin is conjugated. In addition, the kit allows the user to optimize incorporation and product size by adjusting the ratio of Biotin-dUTP conjugate to dTTP. It is compatible with a wide variety of sample materials, including bacterial artificial chromosome (BAC) DNA, human genomic DNA, purified PCR products, supercoiled and linearized plasmid DNA. The resulted Biotin-labeled DNAs can be used in a variety of molecular biology techniques such as fluorescence in situ hybridization (FISH).

Platform


Other instruments

Thermal Cycler

Components


Example protocol


AT A GLANCE

Protocol summary
  1. Prepare DNA samples
  2. Add reagents to tube
  3. Mix and centrifuge briefly
  4. Incubate at 15 °C for 60 minutes
  5. Place the reaction on ice followed by addition of Stop Solution and heating at 65 °C
  6. Place on ice for 5 minutes before using or store at 4 °C
  7. Purify the labelled DNA 

Important
Thaw all the kit components on ice before starting the experiment. Briefly vortex all the reagents to the bottom before starting the labelling process.

SAMPLE EXPERIMENTAL PROTOCOL

The following protocol can be used as a guideline.
Table 1.Reagents composition per tube for each reaction
ComponentsAmount
DNA sample1 µg DNA diluted in Nuclease-free water to final volume of 34 µL
Nick Translation Buffer5 µL
dNTP mix5 µL
dTTP2 µL
Biotin-dUTP working solution 2 µL
DNA Polymerase I1 µL
DNase I1 µL
Total Volume50 µL
The ratio of Biotin-dUTP (Component A): dTTP (Component E) can be optimized to achieve the best labelling conditions.
Incubation time can be optimized for better labelling. Longer incubation time will help with more labelling but may shorten the size of the end product.
  1. To a clean (Nuclease-free) 0.5 mL micro centrifuge tube or 0.2 mL PCR tube, add the reagents in the order indicated in Table 1.
  2. Carefully mix the reagents by a brief vortex followed by brief centrifuge.
  3. Incubate the reaction at 15 °C for 60 minutes.
  4. After incubation, place the reaction on ice.
  5. To terminate the reaction, add 5 µL of Stop Solution and heat the sample at 65 °C.
  6. Place on ice for 5 minutes before using or store at 4 °C.
  7. Purify the labeled DNA. 

Product Family


NameExcitation (nm)Emission (nm)Extinction coefficient (cm -1 M -1)Quantum yieldCorrection Factor (260 nm)Correction Factor (280 nm)Correction Factor (482 nm)Correction Factor (565 nm)
ReadiLink™ Cy3 Nick Translation dsDNA Labeling Kit55556915000010.1510.070.073--
ReadiLink™ Cy5 Nick Translation dsDNA Labeling Kit65167025000010.271, 0.420.020.030.0090.09

Images


References


View all 50 references: Citation Explorer
Biotin as a Reactive Handle to Selectively Label Proteins and DNA with Small Molecules.
Authors: Cotton, Adam D and Wells, James A and Seiple, Ian B
Journal: ACS chemical biology (2021)
In Vitro Biochemical Assays using Biotin Labels to Study Protein-Nucleic Acid Interactions.
Authors: Yu, Lina and He, Wenxiu and Xie, Jie and Guo, Rui and Ni, Juan and Zhang, Xia and Xu, Quishi and Wang, Caifeng and Yue, Qiuling and Li, Fangfang and Luo, Mengcheng and Sun, Bo and Ye, Lan and Zheng, Ke
Journal: Journal of visualized experiments : JoVE (2019)
Quantifying Activity for Repair of the DNA Lesion 8-Oxoguanine by Oxoguanine Glycosylase 1 (OGG1) in Mouse Adult and Fetal Brain Nuclear Extracts Using Biotin-Labeled DNA.
Authors: Bhatia, Shama and Wells, Peter G
Journal: Methods in molecular biology (Clifton, N.J.) (2019): 329-349
Gold nanoparticle aggregation: Colorimetric detection of the interactions between avidin and biotin.
Authors: Shi, Dongmin and Sheng, Feifan and Zhang, Xiaojun and Wang, Guangfeng
Journal: Talanta (2018): 106-112
Sulfinate Based Selective Labeling of 5-Hydroxymethylcytosine: Application to Biotin Pull Down Assay.
Authors: Wu, Qiong and Amrutkar, Suyog Madhav and Shao, Fangwei
Journal: Bioconjugate chemistry (2018): 245-249
On the use of an appropriate TdT-mediated dUTP-biotin nick end labeling assay to identify apoptotic cells.
Authors: Lebon, Cecile and Rodriguez, Gloria Villalpando and Zaoui, Ikram El and Jaadane, Imene and Behar-Cohen, Francine and Torriglia, Alicia
Journal: Analytical biochemistry (2015): 37-41
Re-evaluation of biotin-streptavidin conjugation in Förster resonance energy transfer applications.
Authors: Saremi, Bahar and Wei, Ming-Yuan and Liu, Yuan and Cheng, Bingbing and Yuan, Baohong
Journal: Journal of biomedical optics (2014): 085008
Biotin-conjugated anti-CD44 antibody-avidin binding system for the improvement of chondrocyte adhesion to scaffolds.
Authors: Lin, Hong and Zhou, Jian and Shen, Longxiang and Ruan, Yuhui and Dong, Jian and Guo, Changan and Chen, Zhengrong
Journal: Journal of biomedical materials research. Part A (2014): 1140-8
Electrochemical determination of microRNA-21 based on graphene, LNA integrated molecular beacon, AuNPs and biotin multifunctional bio bar codes and enzymatic assay system.
Authors: Yin, Huanshun and Zhou, Yunlei and Zhang, Haixia and Meng, Xiaomeng and Ai, Shiyun
Journal: Biosensors & bioelectronics (2012): 247-53
A novel electrochemiluminescence strategy for ultrasensitive DNA assay using luminol functionalized gold nanoparticles multi-labeling and amplification of gold nanoparticles and biotin-streptavidin system.
Authors: Chai, Ying and Tian, Dayong and Wang, Wei and Cui, Hua
Journal: Chemical communications (Cambridge, England) (2010): 7560-2