logo
AAT Bioquest

Cell Navigator® Fluorimetric Lipid Droplet Assay Kit *Green Fluorescence*

Fluorescence images of intracellular lipid droplets in control (Left) and Oleic Acid treated HeLa cells (Right) using Cell Navigator® Lipid Droplets Fluorescence Assay Kit. HeLa cells were incubated with 300 uM of Oleic Acid for 24 hours to induce intracellular lipid droplets formation. After washing with PBS, the cells were labeled with 1X Nile Green™ and Hoechst 33342  (Cat#17533).
Fluorescence images of intracellular lipid droplets in control (Left) and Oleic Acid treated HeLa cells (Right) using Cell Navigator® Lipid Droplets Fluorescence Assay Kit. HeLa cells were incubated with 300 uM of Oleic Acid for 24 hours to induce intracellular lipid droplets formation. After washing with PBS, the cells were labeled with 1X Nile Green™ and Hoechst 33342  (Cat#17533).
Fluorescence images of intracellular lipid droplets in control (Left) and Oleic Acid treated HeLa cells (Right) using Cell Navigator® Lipid Droplets Fluorescence Assay Kit. HeLa cells were incubated with 300 uM of Oleic Acid for 24 hours to induce intracellular lipid droplets formation. After washing with PBS, the cells were labeled with 1X Nile Green™ and Hoechst 33342  (Cat#17533).
Ordering information
Price
Catalog Number
Unit Size
Quantity
Add to cart
Additional ordering information
Telephone1-800-990-8053
Fax1-800-609-2943
Emailsales@aatbio.com
InternationalSee distributors
Bulk requestInquire
Custom sizeInquire
ShippingStandard overnight for United States, inquire for international
Request quotation
Spectral properties
Correction Factor (260 nm)0.015
Correction Factor (280 nm)0.018
Extinction coefficient (cm -1 M -1)81000
Excitation (nm)504
Emission (nm)510
Storage, safety and handling
H-phraseH303, H313, H333
Hazard symbolXN
Intended useResearch Use Only (RUO)
R-phraseR20, R21, R22
UNSPSC12352200
Related products
Cell Navigator® Live Cell RNA Imaging Kit *Green Fluorescence*
Cell Navigator® Live Cell Endoplasmic Reticulum (ER) Staining Kit *Green Fluorescence*
Cell Navigator® Live Cell Endoplasmic Reticulum (ER) Staining Kit *Red Fluorescence*
Cell Navigator® Lysosome Staining Kit *Green Fluorescence with 405 nm Excitation*
Cell Navigator® Lysosome Staining Kit *NIR Fluorescence*
Cell Navigator® Lysosome Staining Kit *Blue Fluorescence*
Cell Navigator® Lysosome Staining Kit *Green Fluorescence*
Cell Navigator® Lysosome Staining Kit *Orange Fluorescence*
Cell Navigator® Lysosome Staining Kit *Red Fluorescence*
Cell Navigator® Lysosome Staining Kit *Deep Red Fluorescence*
Cell Navigator® F-Actin Labeling Kit *Blue Fluorescence*
Cell Navigator® F-Actin Labeling Kit *Green Fluorescence*
Cell Navigator® F-Actin Labeling Kit *Orange Fluorescence*
Cell Navigator® F-Actin Labeling Kit *Red Fluorescence*
Cell Navigator® Mitochondrion Staining Kit *Blue Fluorescence*
Cell Navigator® Mitochondrion Staining Kit *Green Fluorescence*
Cell Navigator® Mitochondrion Staining Kit *Orange Fluorescence*
Cell Navigator® Mitochondrion Staining Kit *Red Fluorescence*
Cell Navigator® Mitochondrion Staining Kit *Deep Red Fluorescence*
Cell Navigator® Mitochondrion Staining Kit *Orange Fluorescence with 405 nm Excitation*
Cell Navigator® Cell Plasma Membrane Staining Kit *Orange Fluorescence*
Cell Navigator® Cell Plasma Membrane Staining Kit *Red Fluorescence*
Cell Navigator® Mitochondrion Staining Kit *NIR Fluorescence*
Cell Navigator® NBD Ceramide Golgi Staining Kit *Green Fluorescence*
Cell Navigator® Live Cell Tubulin Staining Kit
Cell Navigator® Cell Plasma Membrane Staining Kit *Green Fluorescence*
Cell Navigator® Live Cell Endoplasmic Reticulum (ER) Staining Kit *Blue Fluorescence*
Cell Navigator® TMR Ceramide Golgi Staining Kit *Red Fluorescence*
Cell Navigator® CDy6 Mitosis Imaging Kit
Cell Navigator™ Flow Cytometric Exosome Staining Kit
Show More (20)

OverviewpdfSDSpdfProtocol


See also: Mitochondria
Correction Factor (260 nm)
0.015
Correction Factor (280 nm)
0.018
Extinction coefficient (cm -1 M -1)
81000
Excitation (nm)
504
Emission (nm)
510
Lipid droplets, also referred to as lipid bodies, oil bodies or adiposomes, are lipid-rich cellular organelles that regulate the storage and hydrolysis of neutral lipids. They also serve as a reservoir of lipid source for many important biological processes such as fatty acid and cellular cholesterol for energy and membrane formation and maintenance. Abnormal accumulation of the cytoplasmic lipid droplets occurs in a variety of pathological conditions and can be an indicator of metabolic deficiency or pathogenesis. AAT Bioquest's Cell Navigator® Fluorimetric Lipid Droplets Assay Kit is a simple assay that could quantitatively measure lipid droplet accumulation. Nile Green™ is used in the kit for lipophilic stain. Nile Green™ is intensely fluorescent in a lipid-rich environment while it has minimal fluorescence in aqueous media. It is an excellent vital stain for the detection of intracellular lipid droplets with fluorescence microscopy, flow cytometry or fluorescence microplate reader. Unlike Nile Red which has broad range of fluorescence spectrum, Nile Green™ stains intracellular lipid droplets with green fluorescence only. It can be used with other fluorescence dyes for multicolor staining. The green fluorescence signal could be observed using the filter set of FITC.

Platform


Fluorescence microscope

ExcitationFITC filter set
EmissionFITC filter set
Recommended plateBlack wall/clear bottom

Fluorescence microplate reader

Excitation485 nm
Emission520 nm
Cutoff510 nm
Recommended plateBlack wall/clear bottom
Instrument specification(s)Bottom read mode

Components


Example protocol


AT A GLANCE

Protocol summary

  1. Prepare cells with test compounds
  2. Add Nile Green™ working solution
  3. Incubate at room temperature or 37°C for 10 to 30 min
  4. Read fluorescence intensity with fluorescence microscope using FITC filter

Important notes
Following is our recommended protocol for live cells. This protocol only provides a guideline, and should be modified according to your specific needs. Since Nile Green™ has minimal fluorescence in aqueous media, aspiration of the growth medium and removal of Nile Green™ staining solution after staining is optional. Stained cells can be fixed with 3 - 4% formaldehyde. In addition, prefixed cells (3 - 4% formaldehyde fixation) can be stained with Nile Green™ staining solution.

PREPARATION OF WORKING SOLUTION

Prepare Nile Green™ working solution by diluting 5 µL of 200X Nile Green™ (Component A) to 1 mL of Staining Buffer (Component B). Note: 50 µL of Nile Green™ (Component A) is enough for one 96-well plate. Protect from light. The optimal concentration of the Nile Green™ varies depending on specific applications. The staining conditions may be modified according to a particular cell type and the permeability of the cells or tissues to the probe.

For guidelines on cell sample preparation, please visit
https://www.aatbio.com/resources/guides/cell-sample-preparation.html

SAMPLE EXPERIMENTAL PROTOCOL

For adherent cells:

  1. Grow cells either in a 96-well black wall/clear bottom plate (100 µL/well/96-well) or on cover-slips inside a petri dish filled with the appropriate culture medium.

  2. Gently aspirate the culture medium and add equal volume (such as 100 µL/well/96-well plate) of the Nile Green™ staining solution.

  3. Incubate the cells in a 37°C, 5% CO2 incubator for 10 - 30 minutes.

  4. Remove Nile Green™ working solution (Optional).

  5. Read Fluorescence at 485/520 nm with a microplate reader or observe the cells using a fluorescence microscope with a FITC filter set.

For suspension cells:

  1. Centrifuge the cells at 1000 rpm for 5 minutes to get 1 - 5 × 105 cells per tube.

  2. Resuspend cells in 500 µL of Nile Green™ working solution.

  3. Incubate at room temperature or 37°C for 10 to 30 min, protected from light.

  4. Centrifuge to remove the Nile Green™ working solution, and resuspend cells in 500 µL of pre-warmed medium or buffer of your choice to get 1 - 5 × 105 cells per tube (Optional).

  5. Monitor the fluorescence increase using fluorescence microscope with a FITC filter set.

Spectrum


Open in Advanced Spectrum Viewer
spectrum

Spectral properties

Correction Factor (260 nm)0.015
Correction Factor (280 nm)0.018
Extinction coefficient (cm -1 M -1)81000
Excitation (nm)504
Emission (nm)510

Product Family


NameExcitation (nm)Emission (nm)Extinction coefficient (cm -1 M -1)Quantum yield
Cell Navigator® Fluorimetric Lipid Droplet Assay Kit *Red Fluorescence*559635380000.70001

Images


References


View all 26 references: Citation Explorer
Live cell imaging and analysis of lipid droplets biogenesis in HCV infected cells
Authors: Nevo-Yassaf, I.; Lovelle, M.; Nahmias, Y.; Hirschberg, K.; Sklan, E. H.
Journal: Methods (2017)
Lipid droplets and associated proteins in sebocytes
Authors: Schneider, M. R.
Journal: Exp Cell Res (2016): 205-8
and beyond
Authors: Wang, C. W., Lipid droplets, lipophagy
Journal: Biochim Biophys Acta (2016): 793-805
Acute accumulation of free cholesterol induces the degradation of perilipin 2 and Rab18-dependent fusion of ER and lipid droplets in cultured human hepatocytes
Authors: Makino, A.; Hullin-Matsuda, F.; Murate, M.; Abe, M.; Tomishige, N.; Fukuda, M.; Yamashita, S.; Fujimoto, T.; Vidal, H.; Lagarde, M.; Delton, I.; Kobayashi, T.
Journal: Mol Biol Cell (2016): 3293-3304
Expression of hepatic lipid droplets is decreased in the nitrofen model of congenital diaphragmatic hernia
Authors: Takahashi, H.; Kutasy, B.; Friedmacher, F.; Takahashi, T.; Puri, P.
Journal: Pediatr Surg Int (2016): 155-60
The life cycle of lipid droplets
Authors: Hashemi, H. F.; Goodman, J. M.
Journal: Curr Opin Cell Biol (2015): 119-24
distribution and saturation level in Non-Alcoholic Fatty Liver Disease in mice
Authors: Kochan, K.; Maslak, E.; Krafft, C.; Kostogrys, R.; Chlopicki, S.; Baranska, M., Raman spectroscopy analysis of lipid droplets content
Journal: J Biophotonics (2015): 597-609
Spastin binds to lipid droplets and affects lipid metabolism
Authors: Papadopoulos, C.; Orso, G.; Mancuso, G.; Herholz, M.; Gumeni, S.; Tadepalle, N.; Jungst, C.; Tzschichholz, A.; Schauss, A.; Honing, S.; Trifunovic, A.; Daga, A.; Rugarli, E. I.
Journal: PLoS Genet (2015): e1005149
Structure, function and metabolism of hepatic and adipose tissue lipid droplets: implications in alcoholic liver disease
Authors: Natarajan, S. K.; Rasineni, K.; Ganesan, M.; Feng, D.; McVicker, B. L.; McNiven, M. A.; Osna, N. A.; Mott, J. L.; Casey, C. A.; Kharb and a, K. K.
Journal: Curr Mol Pharmacol (2015)
Chemical imaging of lipid droplets in muscle tissues using hyperspectral coherent Raman microscopy
Authors: Billecke, N.; Rago, G.; Bosma, M.; Eijkel, G.; Gemmink, A.; Leproux, P.; Huss, G.; Schrauwen, P.; Hesselink, M. K.; Bonn, M.; Parekh, S. H.
Journal: Histochem Cell Biol (2014): 263-73