logo
AAT Bioquest

Tide Fluor™ 8WS maleimide [TF8WS maleimide] *Near Infrared Emission*

Related products
Tide Fluor™ 1 azide [TF1 azide]
Tide Fluor™ 1 alkyne [TF1 alkyne]
Tide Fluor™ 1 acid [TF1 acid] *Superior replacement for EDANS*
Tide Fluor™ 1 amine [TF1 amine] *Superior replacement for EDANS*
Tide Fluor™ 1 CPG [TF1 CPG] *500 Å* *Superior replacement for EDANS*
Tide Fluor™ 1 CPG [TF1 CPG] *1000 Å* *Superior replacement for EDANS*
Tide Fluor™ 1 succinimidyl ester [TF1 SE]*Superior replacement for EDANS*
Tide Fluor™ 2 acid [TF2 acid] *Superior replacement for fluorescein*
Tide Fluor™ 2 amine [TF2 amine] *Superior replacement for fluorescein*
Tide Fluor™ 2, succinimidyl ester [TF2 SE]*Superior replacement for fluorescein*
Tide Fluor™ 2 azide [TF2 azide]
Tide Fluor™ 2 alkyne [TF2 alkyne]
Tide Fluor™ 3 azide [TF3 azide]
Tide Fluor™ 3 alkyne [TF3 alkyne]
Tide Fluor™ 3 acid [TF3 acid] *Superior replacement for Cy3*
Tide Fluor™ 3 amine [TF3 amine] *Superior replacement for Cy3*
Tide Fluor™ 3 succinimidyl ester [TF3 SE]*Superior replacement for Cy3*
Tide Fluor™ 5WS azide [TF5WS azide]
Tide Fluor™ 5WS alkyne [TF5WS alkyne]
Tide Fluor™ 5WS acid [TF5WS acid] *Superior replacement for Cy5*
Tide Fluor™ 5WS amine [TF5WS amine] *Superior replacement for Cy5*
Tide Fluor™ 5WS succinimidyl ester [TF5WS SE]*Superior replacement for Cy5*
Tide Fluor™ 4 acid [TF4 acid] *Superior replacement for ROX and Texas Red*
Tide Fluor™ 4 amine [TF4 amine] *Superior replacement for ROX and Texas Red*
Tide Fluor™ 4, succinimidyl ester [TF4 SE]*Superior replacement for ROX and Texas Red*
Tide Fluor™ 6WS acid [TF6WS acid] *Superior replacement for Cy5.5*
Tide Fluor™ 6WS amine [TF6WS amine] *Superior replacement for Cy5.5*
Tide Fluor™ 6WS succinimidyl ester [TF6WS SE]*Superior replacement for Cy5.5*
Tide Fluor™ 4 azide [TF4 azide]
Tide Fluor™ 4 alkyne [TF4 alkyne]
Tide Fluor™ 6WS azide [TF6WS azide]
Tide Fluor™ 6WS alkyne [TF6WS alkyne]
Tide Fluor™ 7WS azide [TF7WS azide]
Tide Fluor™ 7WS alkyne [TF7WS alkyne]
Tide Fluor™ 7WS acid [TF7WS acid] *Superior replacement for Cy7*
Tide Fluor™ 7WS amine [TF7WS amine] *Superior replacement for Cy7*
Tide Fluor™ 7WS, succinimidyl ester [TF7WS SE]*Superior replacement for Cy7*
Tide Fluor™ 8WS, succinimidyl ester [TF8WS SE]*Near Infrared Emission*
Tide Fluor™ 3WS acid [TF3WS acid] *Superior replacement for Cy3*
Tide Fluor™ 3WS succinimidyl ester [TF3WS SE] *Superior replacement for Cy3*
Tide Fluor™ 3WS amine [TF3WS amine] *Superior replacement for Cy3*
Tide Fluor™ 2WS acid [TF2WS acid] *Superior replacement for FITC*
Tide Fluor™ 2WS succinimidyl ester [TF2WS SE] *Superior replacement for FITC*
Tide Fluor™ 2WS Amine [TF2WS amine] *Superior replacement for FITC*
Tide Fluor™ 3 phosphoramidite [TF3 CEP] *Superior replacement to Cy3 phosphoramidite*
Show More (35)
Tide Fluor™ 8WS (TF8WS) family has the spectral properties similar to those of IRDye 800. Their fluorescence is pH-independent from pH 3 to 11. These characteristics make this new dye family more robust to pH-sensitive assays. In some cases TF8WS-labeled peptides and nucleotides exhibit stronger fluorescence and higher photostability than the ones labeled with IRDye 800. In pairing with our Tide Quencher™ 8WS (TQ8WS), a variety of FRET peptides and nucleotides can be developed for detecting proteases and molecular beacons with enhanced sensitivity and stability. This TQ8WS product is used for post-labeling of thiol-modified oligonucleotides and peptides that contain cysteines.
Fluorescent dye maleimides are the most popular tool for conjugating dyes to a peptide, protein, antibody, thiol-modified oligonucleotide or nucleic acid through their SH group. Maleimides react readily with the thiol group of proteins, thiol-modified oligonucleotides, and other thiol-containing molecules under neutral conditions. The resulting dye conjugates are quite stable.
Fluorescent dye maleimides are the most popular tool for conjugating dyes to a peptide, protein, antibody, thiol-modified oligonucleotide or nucleic acid through their SH group. Maleimides react readily with the thiol group of proteins, thiol-modified oligonucleotides, and other thiol-containing molecules under neutral conditions. The resulting dye conjugates are quite stable.
Fluorescent dye maleimides are the most popular tool for conjugating dyes to a peptide, protein, antibody, thiol-modified oligonucleotide or nucleic acid through their SH group. Maleimides react readily with the thiol group of proteins, thiol-modified oligonucleotides, and other thiol-containing molecules under neutral conditions. The resulting dye conjugates are quite stable.
Ordering information
Price
Unit size
Catalog Number2337
Quantity
Add to cart
Additional ordering information
Telephone1-800-990-8053
Fax1-800-609-2943
Emailsales@aatbio.com
InternationalSee distributors
Bulk requestInquire
Custom sizeInquire
ShippingStandard overnight for United States, inquire for international
Request quotation
Physical properties
Molecular weight1439.86
SolventDMSO
Spectral properties
Correction Factor (280 nm)0.109
Extinction coefficient (cm -1 M -1)250000
Excitation (nm)785
Emission (nm)801
Storage, safety and handling
H-phraseH303, H313, H333
Hazard symbolXN
Intended useResearch Use Only (RUO)
R-phraseR20, R21, R22
StorageFreeze (< -15 °C); Minimize light exposure
UNSPSC12171501
Calculators

Common stock solution preparation

Table 1. Volume of DMSO needed to reconstitute specific mass of Tide Fluor™ 8WS maleimide [TF8WS maleimide] *Near Infrared Emission* to given concentration. Note that volume is only for preparing stock solution. Refer to sample experimental protocol for appropriate experimental/physiological buffers.

0.1 mg0.5 mg1 mg5 mg10 mg
1 mM69.451 µL347.256 µL694.512 µL3.473 mL6.945 mL
5 mM13.89 µL69.451 µL138.902 µL694.512 µL1.389 mL
10 mM6.945 µL34.726 µL69.451 µL347.256 µL694.512 µL

Molarity calculator

Enter any two values (mass, volume, concentration) to calculate the third.

Mass (Calculate)Molecular weightVolume (Calculate)Concentration (Calculate)Moles
/=x=
Spectrum
Citations
View all 8 citations: Citation Explorer
Comparison of Near-Infrared Imaging Agents Targeting the PTPmu Tumor Biomarker
Authors: Johansen, Mette L and Vincent, Jason and Rose, Marissa and Sloan, Andrew E and Brady-Kalnay, Susann M
Journal: Molecular Imaging and Biology (2023): 1--14
A mechanistic model to predict effects of cathepsin B and cystatin C on &beta;-amyloid aggregation and degradation
Authors: Perlenfein, Tyler J and Murphy, Regina M
Journal: Journal of Biological Chemistry (2017): jbc--M117
Real-Time Detection of a Self-Replicating RNA Enzyme
Authors: Olea, Charles and Joyce, Gerald F
Journal: Molecules (2016): 1310
Maternal serum glycosylated fibronectin as a point-of-care biomarker for assessment of preeclampsia
Authors: Rasanen, Juha and Quinn, Matthew J and Laurie, Amber and Bean, Eric and Roberts, Charles T and Nagalla, Srinivasa R and Gravett, Michael G
Journal: American journal of obstetrics and gynecology (2015): 82--e1
Development of Multi-Parametric/Multimodal Spectroscopy Apparatus for Characterization of Functional Interfaces
Authors: Zhou, Lang and Arugula, Mary and Easley, Christopher J and Shannon, Curtis and Simonian, Aleks and r, undefined
Journal: ECS Transactions (2015): 9--16
References
View all 25 references: Citation Explorer
Evaluation of tetramethylrhodamine and black hole quencher 1 labeled probes and five commercial amplification mixes in TaqMan real-time RT-PCR assays for respiratory pathogens
Authors: Yang GP, Erdman DD, Tondella ML, Fields BS.
Journal: J Virol Methods (2009): 288
Time-resolved FRET method for typing polymorphic alleles of the human leukocyte antigen system by using a single DNA probe
Authors: Andreoni A, Bondani M, Nardo L.
Journal: Photochem Photobiol Sci (2009): 1202
Tumor-specific detection of an optically targeted antibody combined with a quencher-conjugated neutravidin "quencher-chaser": a dual "quench and chase" strategy to improve target to nontarget ratios for molecular imaging of cancer
Authors: Ogawa M, Kosaka N, Choyke PL, Kobayashi H.
Journal: Bioconjug Chem (2009): 147
The detection of platelet derived growth factor using decoupling of quencher-oligonucleotide from aptamer/quantum dot bioconjugates
Authors: Kim GI, Kim KW, Oh MK, Sung YM.
Journal: Nanotechnology (2009): 175503
Development of a cell-based hepatitis C virus infection fluorescent resonance energy transfer assay for high-throughput antiviral compound screening
Authors: Yu X, Sainz B, Jr., Uprichard SL.
Journal: Antimicrob Agents Chemother (2009): 4311