AAT Bioquest

Digital PCR

Running a gradient to reduce the effect of co-amplification in digital PCR. The figure shows the observed droplets for 4 temperatures: 62, 59.8, 58.4, and 56°C (from left to right). All reactions were run at λ ≈ 1. As the annealing temperature is raised the specificity of the reaction increases and efficiency of the co-amplification is reduced, until the undesired droplet population merges with the negative population. Source: Lievens A, Jacchia S, Kagkli D, Savini C, Querci M (2016) Measuring Digital PCR Quality: Performance Parameters and Their Optimization. PLoS ONE 11(5): e0153317. https://doi.org/10.1371/journal.pone.0153317.
Digital PCR (dPCR) is a refinement of PCR where DNA is subject to PCR for amplification of the template, then the sample undergoes fluorescent detection and sequence-specific alleles can be directly counted. This method offers a highly sensitive quantification technique where only a very small sample is needed for starting material. dPCR is independent of amplification efficiency, and results are extremely repeatable.

Many times, dPCR is used even to retest the results of next generation sequencing (NGS). dPCR may be used to detect rare mutations in a bulk of wild type (WT) sequences, notably for mutational tumor analysis or for other neoplastic diseases and cancers. dPCR may also be used to assess allelic imbalances in samples, including tissues and plasma, and can detect chromosomal aneuploidy or even autosomal recessive disorders.
dPCR is especially useful for non-invasive prenatal testing that is based on the characterization of circulating cell-free fetal DNA in maternal plasma used for the detection and identification of genetic abnormalities.

Basis Of DifferentiationReal-time PCRTraditional PCRDigital PCR
DefinitionIs a PCR-based technique that combines amplification of a target DNA sequence with quantification of the concentration of that DNA species in the reactionIs a laboratory technique used to amplify a specific DNA segment using a small amount of starting material such as a DNA template or target sequenceIs a quantitative PCR method that provides a sensitive and reproducible way of measuring the amount of DNA or RNA present in a sample
Detection/ measurement of PCR amplificationMeasures PCR amplification as it happens in real time throughout the reactionMeasures the amount of accumulated PCR product at the end of the PCR cyclesMeasures the number of target molecules directly by counting positive fluorescence in compartments
Type of processAutomatedNon-automatedCan be easily automated for higher precision
Type of reactionIs a quantitative reaction - data is collected during the exponential growth phase of PCR when the quantity of the PCR product is directly proportional to the amount of template nucleic acidIs a semi-quantitative reaction - comparing the intensity of the amplified band on a gel to standards of a known concentration can provide 'semi-quantitative' resultsIs a quantitative reaction - allows absolute quantitation of the target molecule using a unique blend of sample dilution and Poisson statistical algorithm
Sensitivity & AccuracyVery high sensitivity and accuracyLow sensitivity and accuracyDesired level of accuracy can be achieved by increasing the number of replicates
  • Collects data in the exponential growth phase of PCR for higher accuracy
  • Increased dynamic range of detection
  • Detection is capable down to a 2-fold change
  • The cleaved probe provides a permanent record amplification of an amplicon
  • Does not offer any advantages over Real-time PCR or Digital PCR
  • Capable of analyzing complex mixtures
  • More tolerant to PCR inhibitors
  • No need to rely on standards or references
  • Capable of detecting small fold change differences because of its linear response to the number of copies present


General Procedure

First a genomic DNA (gDNA) sample is diluted in a multi-well plate with one template molecule per two wells, on average. Though any well plate may be used, it is important to remember that the high throughput capabilities of this technique allow many samples to be analyzed simultaneously. Optimal dilution of gDNA can also be readily achieved by commercially available DNA quantification kits.

Next, PCR is performed on the sample. Optimization of the primers and experimental conditions is sample-specific, and key for success at this step. After PCR, amplicons in the sample are hybridized with fluorescent probes that allow for the detection of sequence-specific products using various fluorophores.

Typically, molecular beacons may be used as the fluorescent probes. These molecular beacons are a single strand oligonucleotide with a fluorescent dye on the 5' end and a quencher on the 3' end. Structurally, molecular beacons are hairpin shaped, which allows the fluorophore to be close to the quencher, though makes sure that the molecule does not emit fluorescence when not hybridized to a PCR product. Two molecular beacons are used that produce two separate fluorescent signals, where one hybridizes to the sequence with the mutation and the other hybridizes to the WT sequence only. The fluorescent signals produced then report the mutational status of a specific allele, and the fluorescence intensity of the two beacons can be determined for each well, giving the ratio of the two sequences.

Molecular beacons are especially useful for mutational analysis detection as they are highly sensitive, even if relatively low levels of mutations are present. dPCR software can then directly count the number of each of the two alleles in the sample.


Analysis, Visualization, and Variations of dPCR

Upon hybridization between the molecular beacons and their complementary sequences, the quencher is distanced from the fluorophore resulting in an increased fluorescent signal. As two beacons are used, upon visualization each well will present with a specific color: one color to indicate WT only, another color to indicate the mutant sequence. Depending on the visualization software used, a third color may indicate the presence of the dually active sample, and it is also possible that some wells will not present with any colors, meaning the well does not contain any PCR product. In some instances, it may also only be necessary to use one fluorescent probe, meaning that during visualization only one color, or none, may be present.

Note: Failed wells, as well as those that emit extremely low or high fluorescence, may be placed in boundaries to not sway analytical data.

Various analysis software suites are available, though the statistical foundation of each is based on principles of binomial probability and the Poisson approximation. Analysis methods may then be used to evaluate the strength of evidence for the loss of heterozygosity (LOH) in each sample. Analysis may also provide copy number variations (CNV) which are the gains or losses of genomic regions > 500 bases in size. CNV may be particularly useful for research related to whole genome studies that focus on the role of CNVs in human genetic disorders.

Two general approaches for dPCR exist: chip-based (cdPCR) and droplet-based methods (ddPCR).

For cdPCR, the chip is composed of physically isolated, compartmentalized, nanoliter size chambers. cdPCR is based on integrated fluidic circuits, an arrayed lipid bilayer chamber system, and a self-priming chip. The chip itself is made from PDMS from soft lithography, and may contain fluid lines, valves, or even reaction chambers within the single device.

Adversely, ddPCR uses a water-in-oil microfluidic technology and flow cytometry to count positive PCR reactions. In ddPCR, the reactions are prepared in a tube, partitioned into individual droplets using a droplet generator, then transferred to a plate for PCR amplification. A two-color optical detection system will then read signals in each droplet. It is important to note that the oil chosen must be nonreactive, and must be capable of forming stable microreactors to prevent the diffusion of the reaction reagent. Additional appropriate surfactants may also be required to stabilize the water-oil interface and prevent coalescence of the emulsion.

Basis Of DifferentiationqPCRddPCR
PrincipleqPCR measures PCR amplification as it happensddPCR measures the fraction of positive and negative duplicates to determine absolute copies
SensitivityModerate: detection limit is from 1-10High: detection limit as low as 1 in 2000
Methods of data collectionTargets with unknown quantity are compared to standard curve with known quantitiesPCR reaction is split into thousands of separate real-time PCR reactions before amplification, and data is only obtained at the end-point
Quantification type (Relative or absolute)Both, but a standard curve with known absolute quantities of the target is necessary for absolute quantificationAbsolute only, ddPCR gives an absolute count of target DNA copies per input sample (no standard curve necessary)
Time establishedEstablished technologyEmerging technology


Benefits, Limitations and Considerations

dPCR, the third generation of the technique, has many benefits over its predecessor, RT-qPCR. dPCR is not as vulnerable to contamination as fluorescence detection is a simplified process. dPCR is also capable of providing absolute, versus relative, quantification, and can be used even with low copy number genes. dPCR may be experimentally faster than RT-qPCR since it does not require a standard curve calibration, that also may require expensive reagents. dPCR also offers increased resistance to PCR inhibitors over other techniques.

It is important to note that the sensitivity of mutational detection depends on a number of factors, including the number of wells included for analysis and the intrinsic mutation rate of the polymerase used in amplification. False positive and false negative events must also be taken into consideration before statistical analysis of the sample is performed. dPCR provides endpoint results, as opposed to those in real-time, so this must be a consideration based on the information needed.

Currently, there are few new methods that allow further optimization of dPCR, and though an incredibly useful technology, it might be unrealistic to invest in the costly dPCR system if a high-throughput RT-qPCR system is already in place.


Table 1. Fluorescent reporter dyes for labeling the 5' end or 3' end on sequence-specific qPCR probes.

Ex (nm)
Em (nm)
Unit Size
Cat No.
EDANS acid [5-((2-Aminoethyl)amino)naphthalene-1-sulfonic acid] *CAS 50402-56-7*3364551 g610
EDANS acid [5-((2-Aminoethyl)amino)naphthalene-1-sulfonic acid] *CAS 50402-56-7*33645510 g611
EDANS C5 maleimide3364555 mg619
EDANS sodium salt [5-((2-Aminoethyl)aminonaphthalene-1-sulfonic acid, sodium salt] *CAS 100900-07-0*3364551 g615
EDANS sodium salt [5-((2-Aminoethyl)aminonaphthalene-1-sulfonic acid, sodium salt] *CAS 100900-07-0*33645510 g616
Tide Fluor™ 1 acid [TF1 acid] *Superior replacement for EDANS*341448100 mg2238
Tide Fluor™ 1 alkyne [TF1 alkyne]3414485 mg2237
Tide Fluor™ 1 amine [TF1 amine] *Superior replacement for EDANS*3414485 mg2239
Tide Fluor™ 1 azide [TF1 azide]3414485 mg2236
Tide Fluor™ 1 CPG [TF1 CPG] *500 Å*341448100 mg2240
Tide Fluor™ 1 CPG [TF1 CPG] *1000 Å*341448100 mg2241
Tide Fluor™ 1 maleimide [TF1 maleimide] *Superior replacement for EDANS*3414485 mg2242
Tide Fluor™ 1 succinimidyl ester [TF1 SE] *Superior replacement for EDANS*3414485 mg2244
5(6)-FAM [5-(and-6)-Carboxyfluorescein] *CAS 72088-94-9*4935171 g100
5(6)-FAM [5-(and-6)-Carboxyfluorescein] *CAS 72088-94-9*49351710 g101
5(6)-FAM [5-(and-6)-Carboxyfluorescein] *CAS 72088-94-9*49351725 g102
5(6)-FAM cadaverine493517100 mg127
5(6)-FAM ethylenediamine493517100 mg123
5(6)-FAM, SE [5-(and-6)-Carboxyfluorescein, succinimidyl ester] *CAS 117548-22-8*49351725 mg110
5(6)-FAM, SE [5-(and-6)-Carboxyfluorescein, succinimidyl ester] *CAS 117548-22-8*493517100 mg111
5(6)-FAM, SE [5-(and-6)-Carboxyfluorescein, succinimidyl ester] *CAS 117548-22-8*4935171 g112
6-FAM [6-Carboxyfluorescein]493517100 mg106
6-FAM [6-Carboxyfluorescein]4935171 g107
6-FAM [6-Carboxyfluorescein]4935175 g108
6-FAM Alkyne49351710 mg134
6-FAM Alkyne493517100 mg956
6-FAM Azide49351710 mg133
6-FAM Azide493517100 mg955
FAM-xtra™ Phosphoramidite 49351750 µmoles6037
6-FAM phosphoramidite [5'-Fluorescein phosphoramidite]493517100 µmoles6016
6-FAM phosphoramidite [5'-Fluorescein phosphoramidite]49351710x100 µmoles6017
6-FAM, SE [6-Carboxyfluorescein, succinimidyl ester] *CAS 92557-81-8*49351710 mg116
6-FAM, SE [6-Carboxyfluorescein, succinimidyl ester] *CAS 92557-81-8*493517100 mg117
6-FAM, SE [6-Carboxyfluorescein, succinimidyl ester] *CAS 92557-81-8*4935171 g118
6-Fluorescein phosphoramidite498517100 µmoles6018
6-Fluorescein phosphoramidite49851710x100 µmoles6019
3'-(6-Fluorescein) CPG *1000 Å*4985171 g6014
Tide Fluor™ 2 acid [TF2 acid] *Superior replacement for fluorescein*50352525 mg2245
Tide Fluor™ 2 alkyne [TF2 alkyne] *Superior replacement for fluorescein*5035251 mg2253
Tide Fluor™ 2 amine [TF2 amine] *Superior replacement for fluorescein*5035251 mg2246
Tide Fluor™ 2 azide [TF2 azide] *Superior replacement for fluorescein*5035251 mg2252
Tide Fluor™ 2 maleimide [TF2 maleimide] *Superior replacement for fluorescein*5035251 mg2247
Tide Fluor™ 2, succinimidyl ester [TF2 SE] *Superior replacement for fluorescein*5035255 mg2248
Tide Fluor™ 2WS acid [TF2WS acid] *Superior replacement for FITC*50352510 mg2348
Tide Fluor™ 2WS amine [TF2WS amine] *Superior replacement for FITC*5035251 mg2351
Tide Fluor™ 2WS maleimide [TF2WS maleimide] *Superior replacement for FITC*5035251 mg2350
Tide Fluor™ 2WS succinimidyl ester [TF2WS SE] *Superior replacement for FITC*5035255 mg2349
6-TET alkyne5215435 mg245
6-TET azide5215435 mg244
6-TET phosphoramidite [5'-Tetrachlorofluorescein phosphoramidite]52154350 µmoles6021
6-TET phosphoramidite [5'-Tetrachlorofluorescein phosphoramidite]521543100 µmoles6027
6-TET phosphoramidite [5'-Tetrachlorofluorescein phosphoramidite]52154310x100 µmoles6025
6-TET, SE [6-Carboxy-2',4,7',7-tetrachlorofluorescein, succinimidyl ester]5215435 mg211
Helix Fluor™ 545, succinimidyl ester5265431 mg250
VIC phosphoramidite52654350 µmoles6080
VIC phosphoramidite526543100 µmoles6081
VIC phosphoramidite5265431 g6082
5-VIC phosphoramidite52654350 µmoles6083
5-VIC phosphoramidite526543100 µmoles6084
5-VIC phosphoramidite5265431 g6085
6-VIC, SE [6-VIC NHS ester]5265431 mg212
6-VIC, SE [6-VIC NHS ester]5265435 mg213
6-HEX alkyne5335595 mg241
6-HEX azide5335595 mg240
6-HEX, SE [6-Carboxy-2',4,4',5',7,7'-hexachlorofluorescein, succinimidyl ester]5335595 mg202
6-HEX phosphoramidite [5'-Hexachlorofluorescein phosphoramidite]533559100 µmoles6026
6-HEX phosphoramidite [5'-Hexachlorofluorescein phosphoramidite]53355910x100 µmoles6024
6-NED alkyne5455671 mg216
6-NED azide5455671 mg217
6-NED maleimide5455671 mg218
6-NED, SE [6-NED NHS ester]5455671 mg214
6-NED, SE [6-NED NHS ester]5455671 mg215
Helix Fluor™ 575, succinimidyl ester5535701 mg251
Tide Fluor™ 3 acid [TF3 acid] *Superior replacement for Cy3*54657125 mg2268
Tide Fluor™ 3 alkyne [TF3 alkyne] *Superior replacement for Cy3*5465711 mg2255
Tide Fluor™ 3 amine [TF3 amine] *Superior replacement for Cy3*5465711 mg2269
Tide Fluor™ 3 azide [TF3 azide] *Superior replacement for Cy3*5465711 mg2254
Tide Fluor™ 3 maleimide [TF3 maleimide] *Superior replacement for Cy3*5465711 mg2270
Tide Fluor™ 3 succinimidyl ester [TF3 SE] *Superior replacement for Cy3*5465711 mg2271
Tide Fluor™ 3 phosphoramidite [TF3 CEP] *Superior replacement to Cy3 phosphoramidite*546571100 µmoles2274
Tide Fluor™ 3WS acid [TF3WS acid] *Superior replacement for Cy3*55156310 mg2268
Tide Fluor™ 3WS amine [TF3 amine] *Superior replacement for Cy3*5515631 mg2347
Tide Fluor™ 3WS maleimide [TF3 maleimide] *Superior replacement for Cy3*5515631 mg2344
Tide Fluor™ 3WS succinimidyl ester [TF3WS SE] *Superior replacement for Cy3*5515631 mg2346
Tide Fluor™ 4 acid [TF4 acid] *Superior replacement for ROX and Texas Red*57860210 mg2285
Tide Fluor™ 4 alkyne [TF4 alkyne] *Superior replacement for ROX and Texas Red*5786021 mg2301
Tide Fluor™ 4 amine [TF4 amine] *Superior replacement for ROX and Texas Red*5786021 mg2286
Tide Fluor™ 4 azide [TF4 azide] *Superior replacement for ROX and Texas Red*5786021 mg2300
Tide Fluor™ 4 maleimide [TF4 maleimide] *Superior replacement for ROX and Texas Red*5786021 mg2287
Tide Fluor™ 4, succinimidyl ester [TF4 SE] *Superior replacement for ROX and Texas Red*5786025 mg2289
Tide Fluor™ 5WS acid [TF5WS acid] *Superior replacement for Cy5*64966410 mg2278
Tide Fluor™ 5WS alkyne [TF5WS alkyne] *Superior replacement for Cy5*6496641 mg2276
Tide Fluor™ 5WS amine [TF5WS amine] *Superior replacement for Cy5*6496641 mg2279
Tide Fluor™ 5WS azide [TF5WS azide] *Superior replacement for Cy5*6496641 mg2275
Tide Fluor™ 5WS maleimide [TF5WS maleimide] *Superior replacement for Cy5*6496641 mg2280
Tide Fluor™ 5WS succinimidyl ester [TF5WS SE] *Superior replacement for Cy5*6496645 mg2281
Tide Fluor™ 6WS acid [TF6WS acid] *Superior replacement for Cy5.5*68270110 mg2291
Tide Fluor™ 6WS alkyne [TF6WS alkyne] *Superior replacement for Cy5.5*6827011 mg2303
Tide Fluor™ 6WS amine [TF6WS amine] *Superior replacement for Cy5.5*6827011 mg2292
Tide Fluor™ 6WS azide [TF6WS azide] *Superior replacement for Cy5.5*6827011 mg2302
Tide Fluor™ 6WS maleimide [TF6WS maleimide] *Superior replacement for Cy5.5*6827011 mg2293
Tide Fluor™ 6WS succinimidyl ester [TF6WS SE] *Superior replacement for Cy5.5*6827011 mg2294
Tide Fluor™ 7WS acid [TF7WS acid] *Superior replacement for Cy7*75678010 mg2330
Tide Fluor™ 7WS alkyne [TF7WS alkyne] *Superior replacement for Cy7*7567801 mg2305
Tide Fluor™ 7WS amine [TF7WS amine] *Superior replacement for Cy7*7567801 mg2331
Tide Fluor™ 7WS azide [TF7WS azide] *Superior replacement for Cy7*7567801 mg2304
Tide Fluor™ 7WS maleimide [TF7WS maleimide] *Superior replacement for Cy7*7567801 mg2332
Tide Fluor™ 7WS succinimidyl ester [TF7WS SE] *Superior replacement for Cy7*7567801 mg2333
Tide Fluor™ 8WS acid [TF8WS acid] *Near Infrared Emission*78580110 mg2335
Tide Fluor™ 8WS alkyne [TF8WS alkyne] *Near Infrared Emission*7858011 mg2307
Tide Fluor™ 8WS amine [TF8WS amine] *Near Infrared Emission*7858011 mg2336
Tide Fluor™ 8WS azide [TF8WS azide] *Near Infrared Emission*7858011 mg2306
Tide Fluor™ 8WS maleimide [TF8WS maleimide] *Near Infrared Emission*7858011 mg2337
Tide Fluor™ 8WS succinimidyl ester [TF8WS SE] *Near Infrared Emission*7858011 mg2338

Table 2. Quencher dyes for labeling the 5' end or 3' end on sequence-specific qPCR probes.

Ex (nm)
Em (nm)
Unit Size
Cat No.
DABCYL acid [4-((4-(Dimethylamino)phenyl)azo)benzoic acid] *CAS 6268-49-1*454N/A5 g2001
DABCYL C2 amine454N/A100 mg2006
DABCYL C2 maleimide454N/A25 mg2008
DABCYL-DBCO454N/A5 mg2010
DABCYL succinimidyl ester [4-((4-(Dimethylamino)phenyl)azo)benzoic acid, succinimidyl ester] *CAS 146998-31-4*454N/A1 g2004
DABCYL succinimidyl ester [4-((4-(Dimethylamino)phenyl)azo)benzoic acid, succinimidyl ester] *CAS 146998-31-4*454N/A5 g2005
3'-DABCYL CPG *1000 Å*454N/A1 g6008
5'-DABCYL C6 Phosphoramidite454N/A1 g6009
Tide Quencher™ 1 acid [TQ1 acid]492N/A100 mg2190
Tide Quencher™ 1 alkyne [TQ1 alkyne]492N/A5 mg2189
Tide Quencher™ 1 amine [TQ1 amine]492N/A5 mg2192
Tide Quencher™ 1 azide [TQ1 azide]492N/A5 mg2188
Tide Quencher™ 1 CPG [TQ5 CPG] *500 Å*492N/A100 mg2193
Tide Quencher™ 1 CPG [TQ5 CPG] *1000 Å*492N/A100 mg2194
Tide Quencher™ 1 maleimide [TQ1 maleimide]492N/A5 mg2196
Tide Quencher™ 1 phosphoramidite [TQ1 phosphoramidite]492N/A100 µmoles2198
Tide Quencher™ 1 succinimidyl ester [TQ1 SE]492N/A25 mg2199
Tide Quencher™ 2 acid [TQ2 acid]516N/A100 mg2200
Tide Quencher™ 2 alkyne [TQ2 alkyne]516N/A5 mg2212
Tide Quencher™ 2 amine [TQ2 amine]516N/A5 mg2202
Tide Quencher™ 2 azide [TQ2 azide]516N/A5 mg2211
Tide Quencher™ 2 CPG [TQ5 CPG] *500 Å*516N/A100 mg2203
Tide Quencher™ 2 CPG [TQ5 CPG] *1000 Å*516N/A100 mg2204
Tide Quencher™ 2 phosphoramidite [TQ2 phosphoramidite]516N/A100 µmoles2208
Tide Quencher™ 2 succinimidyl ester [TQ2 SE]516N/A25 mg2210
Tide Quencher™ 2WS acid [TQ2WS acid]516N/A25 mg2050
Tide Quencher™ 2WS alkyne [TQ2WS alkyne]516N/A1 mg2213
Tide Quencher™ 2WS alkyne [TQ2WS alkyne]516N/A5 mg2214
Tide Quencher™ 2WS maleimide [TQ2WS maleimide]516N/A1 mg2059
Tide Quencher™ 2WS succinimidyl ester [TQ2WS, SE]516N/A5 mg2058
BXQ-1 Alkyne522N/A1 mg2414
BXQ-1 Amine522N/A5 mg2406
BXQ-1 Azide522N/A1 mg2412
BXQ-1 Carboxylic Acid522N/A25 mg2400
BXQ-1 CPG (500 Å)522N/A100 mg2408
BXQ-1 CPG (1000 Å)522N/A100 mg2410
BXQ-1 Maleimide522N/A1 mg2404
BXQ-1 Succinimidyl Ester522N/A5 mg2402
5-TAMRA [5-Carboxytetramethylrhodamine] *CAS 91809-66-4*55257810 mg363
5-TAMRA [5-Carboxytetramethylrhodamine] *CAS 91809-66-4*552578100 mg364
5-TAMRA [5-Carboxytetramethylrhodamine] *CAS 91809-66-4*5525781 g365
Rhodamine aldehyde [5-TAMRA aldehyde]5525785 mg9005
5-TAMRA alkyne5525785 mg487
5-TAMRA alkyne55257850 mg961
5-TAMRA azide5525785 mg486
5-TAMRA azide55257850 mg960
5-TAMRA cadaverine5525785 mg356
5-TAMRA ethylenediamine5525785 mg358
5-TAMRA C6 maleimide5525785 mg424
5-TAMRA, SE [5-Carboxytetramethylrhodamine, succinimidyl ester] *CAS#: 150810-68-7*5525785 mg373
5-TAMRA, SE [5-Carboxytetramethylrhodamine, succinimidyl ester] *CAS#: 150810-68-7*552578100 mg374
5-TAMRA, SE [5-Carboxytetramethylrhodamine, succinimidyl ester] *CAS#: 150810-68-7*5525781 g375
5(6)-TAMRA [5(6)-Carboxytetramethylrhodamine] *CAS 98181-63-6*552578100 mg360
5(6)-TAMRA [5(6)-Carboxytetramethylrhodamine] *CAS 98181-63-6*5525781 g361
5(6)-TAMRA [5(6)-Carboxytetramethylrhodamine] *CAS 98181-63-6*5525785 g362
5(6)-TAMRA cadaverine55257825 mg355
5(6)-TAMRA ethylenediamine55257825 mg354
5(6)-TAMRA Maleimide [Tetramethylrhodamine-5-(and-6)-maleimide]5525785 mg412
5(6)-TAMRA C6 maleimide5525785 mg423
5(6)-TAMRA, SE [5-(and-6)-Carboxytetramethylrhodamine, succinimidyl ester] *CAS 246256-50-8*55257825 mg370
5(6)-TAMRA, SE [5-(and-6)-Carboxytetramethylrhodamine, succinimidyl ester] *CAS 246256-50-8*552578100 mg371
5(6)-TAMRA, SE [5-(and-6)-Carboxytetramethylrhodamine, succinimidyl ester] *CAS 246256-50-8*5525781 g372
6-TAMRA [6-Carboxytetramethylrhodamine] *CAS 91809-67-5*55257810 mg366
6-TAMRA [6-Carboxytetramethylrhodamine] *CAS 91809-67-5*552578100 mg367
6-TAMRA [6-Carboxytetramethylrhodamine] *CAS 91809-67-5*5525781 g368
6-TAMRA alkyne5525785 mg491
6-TAMRA alkyne55257850 mg966
6-TAMRA azide5525785 mg490
6-TAMRA azide55257850 mg965
6-TAMRA cadaverine5525785 mg357
6-TAMRA CPG *1000 Å*5525781 g6051
6-TAMRA ethylenediamine5525785 mg359
6-TAMRA Maleimide [Tetramethylrhodamine-6-maleimide] *CAS 174568-68-4*5525781 mg419
6-TAMRA C6 maleimide5525785 mg425
6-TAMRA, SE [6-Carboxytetramethylrhodamine, succinimidyl ester] *CAS#: 150810-69-8*5525785 mg376
6-TAMRA, SE [6-Carboxytetramethylrhodamine, succinimidyl ester] *CAS#: 150810-69-8*552578100 mg377
6-TAMRA, SE [6-Carboxytetramethylrhodamine, succinimidyl ester] *CAS#: 150810-69-8*5525781 g378
BXQ-2 Alkyne554N/A1 mg2434
BXQ-2 Amine554N/A5 mg2426
BXQ-2 Azide554N/A1 mg2432
BXQ-2 Carboxylic Acid554N/A25 mg2420
BXQ-2 CPG (500 Å)554N/A100 mg2428
BXQ-2 CPG (1000 Å)554N/A100 mg2430
BXQ-2 Maleimide554N/A1 mg2424
BXQ-2 Succinimidyl Ester554N/A5 mg2422
Tide Quencher™ 3 acid [TQ3 acid]573N/A100 mg2220
Tide Quencher™ 3 alkyne [TQ3 alkyne]573N/A5 mg2232
Tide Quencher™ 3 amine [TQ3 amine]573N/A5 mg2222
Tide Quencher™ 3 azide [TQ3 azide]573N/A5 mg2231
Tide Quencher™ 3 CPG [TQ5 CPG] *500 Å*573N/A100 mg2223
Tide Quencher™ 3 CPG [TQ5 CPG] *1000 Å*573N/A100 mg2224
Tide Quencher™ 3 maleimide [TQ3 maleimide]573N/A5 mg2226
Tide Quencher™ 3 phosphoramidite [TQ3 phosphoramidite]573N/A100 µmoles2228
Tide Quencher™ 3 succinimidyl ester [TQ3 SE]573N/A25 mg2230
Tide Quencher™ 3WS acid [TQ3WS acid]573N/A1 mg2229
Tide Quencher™ 3WS succinimidyl ester [TQ3WS SE]573N/A5 mg2227
Tide Quencher™ 4 CPG [TQ5 CPG] *500 Å*603N/A100 mg2062
Tide Quencher™ 4 CPG [TQ5 CPG] *1000 Å*603N/A100 mg2063
Tide Quencher™ 4WS acid [TQ4WS acid]603N/A5 mg2060
Tide Quencher™ 4WS alkyne [TQ4WS alkyne]603N/A1 mg2069
Tide Quencher™ 4WS amine [TQ4WS amine]603N/A1 mg2061
Tide Quencher™ 4WS azide [TQ4WS azide]603N/A1 mg2068
Tide Quencher™ 4WS maleimide [TQ4WS maleimide]603N/A1 mg2064
Tide Quencher™ 4WS succinimidyl ester [TQ4WS SE]603N/A1 mg2067
Tide Quencher™ 5 CPG [TQ5 CPG] *500 Å*661N/A100 mg2077
Tide Quencher™ 5 CPG [TQ5 CPG] *1000 Å*661N/A100 mg2078
Tide Quencher™ 5WS acid [TQ5WS acid]661N/A5 mg2075
Tide Quencher™ 5WS alkyne [TQ5WS alkyne]661N/A1 mg2083
Tide Quencher™ 5WS amine [TQ5WS amine]661N/A1 mg2076
Tide Quencher™ 5WS azide [TQ5WS azide]661N/A1 mg2082
Tide Quencher™ 5WS maleimide [TQ5WS maleimide]661N/A1 mg2079
Tide Quencher™ 5WS succinimidyl ester [TQ5WS SE]661N/A1 mg2081
Tide Quencher™ 6WS acid [TQ6WS acid]694N/A5 mg2090
Tide Quencher™ 6WS alkyne [TQ6WS alkyne]694N/A1 mg2098
Tide Quencher™ 6WS amine [TQ6WS amine]694N/A1 mg2091
Tide Quencher™ 6WS azide [TQ6WS azide]694N/A1 mg2097
Tide Quencher™ 6WS maleimide [TQ6WS maleimide]694N/A1 mg2094
Tide Quencher™ 6WS succinimidyl ester [TQ6WS SE]694N/A1 mg2096
Tide Quencher™ 7WS acid [TQ7WS acid]764N/A5 mg2105
Tide Quencher™ 7WS alkyne [TQ7WS alkyne]764N/A1 mg2113
Tide Quencher™ 7WS amine [TQ7WS amine]764N/A1 mg2106
Tide Quencher™ 7WS azide [TQ7WS azide]764N/A1 mg2112
Tide Quencher™ 7WS maleimide [TQ7WS maleimide]764N/A1 mg2109
Tide Quencher™ 7WS succinimidyl ester [TQ7WS SE]764N/A1 mg2111