logo
AAT Bioquest

Tide Quencher™ 2 succinimidyl ester [TQ2 SE]

TQ2 is designed to be a superior quencher to FAM, HEX, TET, JOE, TF2 and rhodamine 6G. TQ2 has (a). much stronger absorption; (b). much higher quenching efficiency; and (c). versatile reactive forms with desired solubility for labeling oligonucleotides and peptides. This TQ2 product is primarily used for labeling peptides. It is also used for post-labeling of amino-modified oligonucleotides.

Calculators

Common stock solution preparation

Table 1. Volume of DMSO needed to reconstitute specific mass of Tide Quencher™ 2 succinimidyl ester [TQ2 SE] to given concentration. Note that volume is only for preparing stock solution. Refer to sample experimental protocol for appropriate experimental/physiological buffers.

0.1 mg0.5 mg1 mg5 mg10 mg
1 mM208.529 µL1.043 mL2.085 mL10.426 mL20.853 mL
5 mM41.706 µL208.529 µL417.058 µL2.085 mL4.171 mL
10 mM20.853 µL104.264 µL208.529 µL1.043 mL2.085 mL

Molarity calculator

Enter any two values (mass, volume, concentration) to calculate the third.

Mass (Calculate)Molecular weightVolume (Calculate)Concentration (Calculate)Moles
/=x=

Spectrum

Citations

View all 8 citations: Citation Explorer
The dynamic nature of transglutaminases
Authors: Hjorth-Jensen, Samuel
Journal: (2018)
A mechanistic model to predict effects of cathepsin B and cystatin C on β-amyloid aggregation and degradation
Authors: Perlenfein, Tyler J and Murphy, Regina M
Journal: Journal of Biological Chemistry (2017): jbc--M117
Real-Time Detection of a Self-Replicating RNA Enzyme
Authors: Olea, Charles and Joyce, Gerald F
Journal: Molecules (2016): 1310
Maternal serum glycosylated fibronectin as a point-of-care biomarker for assessment of preeclampsia
Authors: Rasanen, Juha and Quinn, Matthew J and Laurie, Amber and Bean, Eric and Roberts, Charles T and Nagalla, Srinivasa R and Gravett, Michael G
Journal: American journal of obstetrics and gynecology (2015): 82--e1
Development of Multi-Parametric/Multimodal Spectroscopy Apparatus for Characterization of Functional Interfaces
Authors: Zhou, Lang and Arugula, Mary and Easley, Christopher J and Shannon, Curtis and Simonian, Aleks and r, undefined
Journal: ECS Transactions (2015): 9--16

References

View all 25 references: Citation Explorer
Evaluation of tetramethylrhodamine and black hole quencher 1 labeled probes and five commercial amplification mixes in TaqMan real-time RT-PCR assays for respiratory pathogens
Authors: Yang GP, Erdman DD, Tondella ML, Fields BS.
Journal: J Virol Methods (2009): 288
Time-resolved FRET method for typing polymorphic alleles of the human leukocyte antigen system by using a single DNA probe
Authors: Andreoni A, Bondani M, Nardo L.
Journal: Photochem Photobiol Sci (2009): 1202
Tumor-specific detection of an optically targeted antibody combined with a quencher-conjugated neutravidin "quencher-chaser": a dual "quench and chase" strategy to improve target to nontarget ratios for molecular imaging of cancer
Authors: Ogawa M, Kosaka N, Choyke PL, Kobayashi H.
Journal: Bioconjug Chem (2009): 147
The detection of platelet derived growth factor using decoupling of quencher-oligonucleotide from aptamer/quantum dot bioconjugates
Authors: Kim GI, Kim KW, Oh MK, Sung YM.
Journal: Nanotechnology (2009): 175503
Development of a cell-based hepatitis C virus infection fluorescent resonance energy transfer assay for high-throughput antiviral compound screening
Authors: Yu X, Sainz B, Jr., Uprichard SL.
Journal: Antimicrob Agents Chemother (2009): 4311
Page updated on October 9, 2024

Ordering information

Price
Unit size
Catalog Number2210
Quantity
Add to cart

Additional ordering information

Telephone1-800-990-8053
Fax1-800-609-2943
Emailsales@aatbio.com
InternationalSee distributors
Bulk requestInquire
Custom sizeInquire
Technical SupportContact us
Purchase orderSend to sales@aatbio.com
ShippingStandard overnight for United States, inquire for international
Request quotation

Physical properties

Molecular weight

479.55

Solvent

DMSO

Spectral properties

Absorbance (nm)

516

Correction Factor (260 nm)

0.100

Correction Factor (280 nm)

0.12

Extinction coefficient (cm -1 M -1)

21000

Storage, safety and handling

H-phraseH303, H313, H333
Hazard symbolXN
Intended useResearch Use Only (RUO)
R-phraseR20, R21, R22

Storage

Freeze (< -15 °C); Minimize light exposure
UNSPSC12352200
Dye NHS esters (or succinimidyl esters) are the most popular tool for conjugating dyes to a peptide, protein, antibody, amino-modified oligonucleotide or nucleic acid. NHS esters react readily with the primary amines (R-NH<sub>2</sub>) of proteins, amine-modified oligonucleotides, and other amine-containing molecules. The resulting dye conjugates are quite stable.
Dye NHS esters (or succinimidyl esters) are the most popular tool for conjugating dyes to a peptide, protein, antibody, amino-modified oligonucleotide or nucleic acid. NHS esters react readily with the primary amines (R-NH<sub>2</sub>) of proteins, amine-modified oligonucleotides, and other amine-containing molecules. The resulting dye conjugates are quite stable.
Dye NHS esters (or succinimidyl esters) are the most popular tool for conjugating dyes to a peptide, protein, antibody, amino-modified oligonucleotide or nucleic acid. NHS esters react readily with the primary amines (R-NH<sub>2</sub>) of proteins, amine-modified oligonucleotides, and other amine-containing molecules. The resulting dye conjugates are quite stable.