logo
AAT Bioquest

Cy7 tyramide

Product Image
Product Image
Gallery Image 1
Ordering information
Price
Catalog Number
Unit Size
Quantity
Add to cart
Additional ordering information
Telephone1-800-990-8053
Fax1-800-609-2943
Emailsales@aatbio.com
InternationalSee distributors
Bulk requestInquire
Custom sizeInquire
ShippingStandard overnight for United States, inquire for international
Request quotation
Physical properties
Molecular weight903.21
SolventDMSO
Spectral properties
Correction Factor (260 nm)0.05
Correction Factor (280 nm)0.036
Correction Factor (482 nm)0.0005
Correction Factor (565 nm)0.0193
Correction Factor (650 nm)0.165
Extinction coefficient (cm -1 M -1)250000
Excitation (nm)756
Emission (nm)779
Quantum yield0.3
Storage, safety and handling
H-phraseH303, H313, H333
Hazard symbolXN
Intended useResearch Use Only (RUO)
R-phraseR20, R21, R22
StorageFreeze (< -15 °C); Minimize light exposure
UNSPSC12171501

OverviewpdfSDSpdfProtocol


See also: Cyanines
Molecular weight
903.21
Correction Factor (260 nm)
0.05
Correction Factor (280 nm)
0.036
Correction Factor (482 nm)
0.0005
Correction Factor (565 nm)
0.0193
Correction Factor (650 nm)
0.165
Extinction coefficient (cm -1 M -1)
250000
Excitation (nm)
756
Emission (nm)
779
Quantum yield
0.3
Tyramide signal amplification (TSA) has proven to be a particularly versatile and powerful enzyme amplification technique with improved assay sensitivity. TSA is based on the ability of HRP, in the presence of low concentrations of hydrogen peroxide, to convert labeled tyramine-containing substrate into an oxidized, highly reactive free radical that can covalently bind to tyrosine residues at or near the HRP. The signal amplification conferred by the turnover of multiple tyramide substrates per peroxidase label translates ultrasensitive detection of low-abundance targets and the use of smaller amounts of antibodies and hybridization probes. In immunohistochemical applications, sensitivity enhancements derived from TSA method allow primary antibody dilutions to be increased to reduce nonspecific background signals, and can overcome weak immunolabeling caused by suboptimal fixation procedures or low levels of target expression. Cy7 tyramide contains the popular Cy7 fluorophore that can be readily detected with the standard Cy7 filter set. Its NIR excitation and emission make the probe an ideal choice for the applications where the common tyramides may have an interference resulted from the inherent fluorescence of tissues or other samples.

Platform


Fluorescence microscope

ExcitationCy7 filter set
EmissionCy7 filter set
Recommended plateBlack wall/clear bottom

Example protocol


AT A GLANCE

Protocol Summary
  1. Fix/permeabilize/block cells or tissue
  2. Add primary antibody in blocking buffer
  3. Add HRP-conjugated secondary antibody
  4. Prepare tyramide working solution and apply in cells or tissue for 5-10 minutes at room temperature 

PREPARATION OF STOCK SOLUTIONS

Unless otherwise noted, all unused stock solutions should be divided into single-use aliquots and stored at -20 °C after preparation. Avoid repeated freeze-thaw cycles.

Tyramide stock solution (200X)
Add appropriate amount of DMSO to make 1 or 2 mg/mL stock solution and mix well. Note: Unused Tyramide stock solution can be stored at 2-8 °C.

PREPARATION OF WORKING SOLUTION

Tyramide working solution (1X)
Add 100 µL of Tyramide stock solution into 20 mL of buffer of your choice containing 0.003% H2O2. Note: Tris Buffer, pH=7.4 can be used for similar performance. Note: Tyramide working solution should be used immediately and made fresh on the day of use. Note: Concentration should be optimized initially for final appropriate concentration for the tests.

SAMPLE EXPERIMENTAL PROTOCOL

This protocol is applicable for both cells and tissues staining.

Cell fixation and permeabilization
  1. Fix the cells or tissue with 3.7% formaldehyde or paraformaldehyde, in PBS at room temperature for 20 minutes.
  2. Rinse the cells or tissue with PBS twice.
  3. Permeabilize the cells with 0.1% Triton X-100 solution for 1-5 minutes at room temperature.
  4. Rinse the cells or tissue with PBS twice. 

Tissue fixation, deparaffinization and rehydration
Deparaffinize and dehydrate the tissue according to the standard IHC protocols. Perform antigen retrieval with preferred specific solution/protocol as needed.
Protocol can be found at: https://www.aatbio.com/resources/guides/paraffin-embedded-tissueimmunohistochemistry-protocol.html

Peroxidase labeling
  1. Optional: Quench endogenous peroxidase activity by incubating cell or tissue sample in peroxidase quenching solution (such as 3% hydrogen peroxide) for 10 minutes. Rinse with PBS twice at room temperature.
  2. Optional: If using HRP-conjugated streptavidin, it is advisable to block endogenous biotins by biotin blocking buffer.
  3. Block with preferred blocking solution (such as PBS with 1% BSA) for 30 minutes at 4 °C.
  4. Remove blocking solution and add primary antibody diluted in recommended antibody diluent for 60 minutes at room temperature or overnight at 4 °C.
  5. Wash with PBS three times for 5 minutes each.
  6. Apply 100 µL of secondary antibody-HRP working solution to each sample and incubate for 60 minutes at room temperature. Note: Incubation time and concentration can be varied depending on the signal intensity.
  7. Wash with PBS three times for 5 minutes each. 

Tyramide labeling
  1. Prepare and apply 100 µL of Tyramide working solution to each sample and incubate for 5-10 minutes at room temperature. Note: If you observe non-specific signal, you can shorten the incubation time with Tyramide. You should optimize the incubation period using positive and negative control samples at various incubation time points. Or you can use lower concentration of Tyramide in the working solution.
  2. Rinse with PBS three times. 

Counterstain and fluorescence imaging
  1. Counterstain the cell or tissue samples as needed. AAT provides a series of nucleus counterstain reagents as listed in Table 1. Follow the instruction provided with the reagents.
  2. Mount the coverslip using a mounting medium with anti-fading properties.
  3. Use the appropriate filter set to visualize the signal from the Tyramide labeling. 
Table 1.Products recommended for nucleus counterstain
Cat#Product NameEx/Em (nm)
17548Nuclear Blue™ DCS1350/461
17550Nuclear Green™ DCS1503/526
17551Nuclear Orange™ DCS1528/576
17552Nuclear Red™ DCS1642/660

Calculators


Common stock solution preparation

Table 1. Volume of DMSO needed to reconstitute specific mass of Cy7 tyramide to given concentration. Note that volume is only for preparing stock solution. Refer to sample experimental protocol for appropriate experimental/physiological buffers.

0.1 mg0.5 mg1 mg5 mg10 mg
1 mM110.716 µL553.581 µL1.107 mL5.536 mL11.072 mL
5 mM22.143 µL110.716 µL221.432 µL1.107 mL2.214 mL
10 mM11.072 µL55.358 µL110.716 µL553.581 µL1.107 mL

Molarity calculator

Enter any two values (mass, volume, concentration) to calculate the third.

Mass (Calculate)Molecular weightVolume (Calculate)Concentration (Calculate)Moles
/=x=

Spectrum


Open in Advanced Spectrum Viewer
spectrum

Spectral properties

Correction Factor (260 nm)0.05
Correction Factor (280 nm)0.036
Correction Factor (482 nm)0.0005
Correction Factor (565 nm)0.0193
Correction Factor (650 nm)0.165
Extinction coefficient (cm -1 M -1)250000
Excitation (nm)756
Emission (nm)779
Quantum yield0.3

Product Family


NameExcitation (nm)Emission (nm)Extinction coefficient (cm -1 M -1)Quantum yieldCorrection Factor (260 nm)Correction Factor (280 nm)
Cy7 Styramide *Superior Replacement for Cy7 tyramide*7567792500000.30.050.036
Cy7 tetrazine7567792500000.30.050.036
Cy3 tyramide55556915000010.1510.070.073
Cy5 tyramide65167025000010.271, 0.420.020.03
XFD514 tyramide51854380000-0.310.18
XFD532 tyramide534553810000.6110.240.09
Fluorescein Tyramide4985178000010.79001, 0.9520.320.35
PerCP-Cy7757783350000---

Images


References


View all 50 references: Citation Explorer
Tyramide Signal-Amplified Immunofluorescence of MYCN and MYC in Human Tissue Specimens and Cell Line Cultures.
Authors: Schafer, Johanna M and Pietenpol, Jennifer A
Journal: Bio-protocol (2020): e3677
Cascade signal amplification for sensitive detection of exosomes by integrating tyramide and surface-initiated enzymatic polymerization.
Authors: Huang, Zhipeng and Lin, Qiuyuan and Yang, Bin and Ye, Xin and Chen, Hui and Weng, Wenhao and Kong, Jilie
Journal: Chemical communications (Cambridge, England) (2020): 12793-12796
Detection of Cytokine Receptors Using Tyramide Signal Amplification for Immunofluorescence.
Authors: Wang, Herui and Pangilinan, Ryan L and Zhu, Yan
Journal: Methods in molecular biology (Clifton, N.J.) (2020): 89-97
Characterizing the Tumor Immune Microenvironment with Tyramide-Based Multiplex Immunofluorescence.
Authors: Mori, Hidetoshi and Bolen, Jennifer and Schuetter, Louis and Massion, Pierre and Hoyt, Clifford C and VandenBerg, Scott and Esserman, Laura and Borowsky, Alexander D and Campbell, Michael J
Journal: Journal of mammary gland biology and neoplasia (2020): 417-432
Procedural Requirements and Recommendations for Multiplex Immunofluorescence Tyramide Signal Amplification Assays to Support Translational Oncology Studies.
Authors: Parra, Edwin Roger and Jiang, Mei and Solis, Luisa and Mino, Barbara and Laberiano, Caddie and Hernandez, Sharia and Gite, Swati and Verma, Anuj and Tetzlaff, Michael and Haymaker, Cara and Tamegnon, Auriole and Rodriguez-Canales, Jaime and Hoyd, Clifford and Bernachez, Chantale and Wistuba, Ignacio
Journal: Cancers (2020)
Sensitive Multiplexed Fluorescent In Situ Hybridization Using Enhanced Tyramide Signal Amplification and Its Combination with Immunofluorescent Protein Visualization in Zebrafish.
Authors: Lauter, Gilbert and Söll, Iris and Hauptmann, Giselbert
Journal: Methods in molecular biology (Clifton, N.J.) (2020): 397-409
Tyramide signal amplification mass spectrometry (TSA-MS) ratio identifies nuclear speckle proteins.
Authors: Dopie, Joseph and Sweredoski, Michael J and Moradian, Annie and Belmont, Andrew S
Journal: The Journal of cell biology (2020)
Highly Sensitive Detection of PCV2 Based on Tyramide Signals and GNPL Amplification.
Authors: Zhang, Shouping and Hu, Bin and Xia, Xiaojing and Xu, Yanzhao and Hang, Bolin and Jiang, Jinqing and Hu, Jianhe
Journal: Molecules (Basel, Switzerland) (2019)
An ultrasensitive electrochemical immunosensor for procalcitonin detection based on the gold nanoparticles-enhanced tyramide signal amplification strategy.
Authors: Liu, Pei and Li, Chao and Zhang, Ruixuan and Tang, Qing and Wei, Jia and Lu, Yan and Shen, Pingping
Journal: Biosensors & bioelectronics (2019): 543-550
A amperometric immunosensor for sensitive detection of circulating tumor cells using a tyramide signal amplification-based signal enhancement system.
Authors: Zhou, Xiaoyan and Li, Yujian and Wu, Haiping and Huang, Wei and Ju, Huangxian and Ding, Shijia
Journal: Biosensors & bioelectronics (2019): 88-94