AAT Bioquest


Product Image
Product Image
Gallery Image 1
(A) Strategy for ‘click’-capture of B2-N3 with DBCO-Cy3 (B) fluorescence microscopy of B2-N3 labelled Mycobacterium smegmatis with DBCO-Cy3 via SPAAC. Scale bars are 5 μm. Source: <b>Imaging of antitubercular dimeric boronic acids at the mycobacterial cell surface by click-probe capture</b> by Collette S. Guy, Ruben M. F. Tomás, Qiao Tang, Matthew I. Gibson and Elizabeth Fullam. <em>Chem. Commun.</em>, Aug. 2022.
Ordering information
Catalog Number
Unit Size
Add to cart
Additional ordering information
InternationalSee distributors
Bulk requestInquire
Custom sizeInquire
ShippingStandard overnight for United States, inquire for international
Request quotation
Physical properties
Molecular weight1185.56
Spectral properties
Correction Factor (260 nm)0.07
Correction Factor (280 nm)0.073
Extinction coefficient (cm -1 M -1)1500001
Excitation (nm)555
Emission (nm)569
Quantum yield0.151
Storage, safety and handling
Certificate of OriginDownload PDF
H-phraseH303, H313, H333
Hazard symbolXN
Intended useResearch Use Only (RUO)
R-phraseR20, R21, R22
StorageFreeze (< -15 °C); Minimize light exposure


See also: Cyanines
Molecular weight
Correction Factor (260 nm)
Correction Factor (280 nm)
Extinction coefficient (cm -1 M -1)
Excitation (nm)
Emission (nm)
Quantum yield
This azadibenzocyclooctyne-cyanine dye derivative is a versatile labeling reagent for detection of azide containing molecules or compounds. Cyclooctynes are useful in strain-promoted copper-free azide-alkyne cycloaddition reactions. This dibenzocyclooctyne will react with azide-functionalized compounds or biomolecules without the need for a Cu(I) catalyst to result in a stable triazole linkage. AAT Bioquest offer a broad range of dye azide compounds (such as coumarin azides, fluorescein azides, rhodamine azides and cyanine azides) for click reactions.


Common stock solution preparation

Table 1. Volume of DMSO needed to reconstitute specific mass of DBCO-Cy3 to given concentration. Note that volume is only for preparing stock solution. Refer to sample experimental protocol for appropriate experimental/physiological buffers.

0.1 mg0.5 mg1 mg5 mg10 mg
1 mM84.348 µL421.742 µL843.483 µL4.217 mL8.435 mL
5 mM16.87 µL84.348 µL168.697 µL843.483 µL1.687 mL
10 mM8.435 µL42.174 µL84.348 µL421.742 µL843.483 µL

Molarity calculator

Enter any two values (mass, volume, concentration) to calculate the third.

Mass (Calculate)Molecular weightVolume (Calculate)Concentration (Calculate)Moles


Open in Advanced Spectrum Viewer

Spectral properties

Correction Factor (260 nm)0.07
Correction Factor (280 nm)0.073
Extinction coefficient (cm -1 M -1)1500001
Excitation (nm)555
Emission (nm)569
Quantum yield0.151

Product Family

NameExcitation (nm)Emission (nm)Extinction coefficient (cm -1 M -1)Quantum yieldCorrection Factor (260 nm)Correction Factor (280 nm)
Cy3 tetrazine55556915000010.1510.070.073
DBCO-Cy565167025000010.271, 0.420.020.03
Cy3 phosphoramidite55556915000010.1510.070.073
Cy3 tyramide55556915000010.1510.070.073
Cy3 aldehyde55556915000010.1510.070.073
Cy3B DBCO56057112000010.5810.0480.069



View all 2 citations: Citation Explorer
Imaging of antitubercular dimeric boronic acids at the mycobacterial cell surface by click-probe capture
Authors: Guy, Collette S and Tom{\'a}s, Ruben MF and Tang, Qiao and Gibson, Matthew I and Fullam, Elizabeth
Journal: Chemical Communications (2022): 9361--9364


View all 49 references: Citation Explorer
Beyond click chemistry - supramolecular interactions of 1,2,3-triazoles
Authors: Schulze B, Schubert US.
Journal: Chem Soc Rev (2014): 2522
Calixarene-based chemosensors by means of click chemistry
Authors: Song M, Sun Z, Han C, Tian D, Li H, Kim JS.
Journal: Chem Asian J (2014): 2344
Use of click-chemistry in the development of peptidomimetic enzyme inhibitors
Authors: Fabbrizzi P, Menchi G, Guarna A, Trabocchi A.
Journal: Curr Med Chem (2014): 1467
Applications of copper-catalyzed click chemistry in activity-based protein profiling
Authors: Martell J, Weerapana E.
Journal: Molecules (2014): 1378
'Click chemistry' for diagnosis: a patent review on exploitation of its emerging trends
Authors: M, undefined and hare A, Banerjee P, Bhutkar S, Hirwani R.
Journal: Expert Opin Ther Pat (2014): 1287
Specific and quantitative labeling of biomolecules using click chemistry
Authors: Horisawa K., undefined
Journal: Front Physiol (2014): 457
A dynamic duo: pairing click chemistry and postpolymerization modification to design complex surfaces
Authors: Arnold RM, Patton DL, Popik VV, Locklin J.
Journal: Acc Chem Res (2014): 2999
Alkyne-azide "click" chemistry in designing nanocarriers for applications in biology
Authors: Avti PK, Maysinger D, Kakkar A.
Journal: Molecules (2013): 9531
Inverse electron demand Diels-Alder (iEDDA)-initiated conjugation: a (high) potential click chemistry scheme
Authors: Knall AC, Slugovc C.
Journal: Chem Soc Rev (2013): 5131
Click chemistry for drug development and diverse chemical-biology applications
Authors: Thirumurugan P, Matosiuk D, Jozwiak K.
Journal: Chem Rev (2013): 4905