Fura Red, AM *CAS 149732-62-7*
Ordering information
Price | |
Catalog Number | |
Unit Size | |
Quantity |
Additional ordering information
Telephone | 1-800-990-8053 |
Fax | 1-800-609-2943 |
sales@aatbio.com | |
Quotation | Request |
International | See distributors |
Shipping | Standard overnight for United States, inquire for international |
Physical properties
Dissociation constant (Kd, nM) | 400 |
Molecular weight | 1088.99 |
Solvent | DMSO |
Spectral properties
Excitation (nm) | 435 |
Emission (nm) | 639 |
Storage, safety and handling
H-phrase | H303, H313, H333 |
Hazard symbol | XN |
Intended use | Research Use Only (RUO) |
R-phrase | R20, R21, R22 |
Storage | Freeze (< -15 °C); Minimize light exposure |
UNSPSC | 12352200 |
Overview | ![]() ![]() |
See also: Calcium Indicators, Intracellular Ions, Physiological Probes, Ratiometric Calcium Indicators
CAS 149732-62-7 | Molecular weight 1088.99 | Dissociation constant (Kd, nM) 400 | Excitation (nm) 435 | Emission (nm) 639 |
Fura Red is a visible light-excitable fura-2 analog that offers unique possibilities for ratiometric measurement of calcium ion in single cells by microphotometry, imaging or flow cytometry when used with single excitation, green-fluorescent calcium indicators. Fura Red AM is the cell-permeable version of Fura Red used for noninvasive intracellular loading. Fura Red AM can be simultaneously loaded into cells with Fluo-3 AM, Fluo-8 AM or Cal-520 AM. An advantage of combining two calcium dyes is that dyes with longer excitation wavelengths can be used. This usually causes less harm to the cells than using ratiometric dyes that are excited with UV- or near UV-light (e.g. Fura-2), as light at visible wavelengths is less phototoxic.
Platform
Fluorescence microplate reader
Excitation | 435, 470 |
Emission | 630, 650 |
Cutoff | Ex/Em = 435/630, cutoff 610. Ex/Em = 470/650, cut off 630 |
Recommended plate | Black wall/clear bottom |
Instrument specification(s) | Bottom read mode/Programmable liquid handling |
Example protocol
PREPARATION OF STOCK SOLUTIONS
Unless otherwise noted, all unused stock solutions should be divided into single-use aliquots and stored at -20 °C after preparation. Avoid repeated freeze-thaw cycles.
Fura Red AM Stock Solution
Prepare a 2 to 5 mM stock solution of Fura Red AM in high-quality, anhydrous DMSO.PREPARATION OF WORKING SOLUTION
Fura Red AM Working Solution
On the day of the experiment, either dissolve Fura Red AM in DMSO or thaw an aliquot of the indicator stock solution to room temperature. Prepare a dye working solution of 2 to 20 µM in a buffer of your choice (e.g., Hanks and Hepes buffer) with 0.04% Pluronic® F-127. For most cell lines, Fura Red AM at a final concentration of 4-5 μM is recommended. The exact concentration of indicators required for cell loading must be determined empirically.Note The nonionic detergent Pluronic® F-127 is sometimes used to increase the aqueous solubility of Fura Red AM. A variety of Pluronic® F-127 solutions can be purchased from AAT Bioquest.
Note If your cells contain organic anion-transporters, probenecid (1-2 mM) may be added to the dye working solution (final in well concentration will be 0.5-1 mM) to reduce leakage of the de-esterified indicators. A variety of ReadiUse™ probenecid products, including water-soluble, sodium salt, and stabilized solution, can be purchased from AAT Bioquest.
SAMPLE EXPERIMENTAL PROTOCOL
Following is our recommended protocol for loading AM esters into live cells. This protocol only provides a guideline and should be modified according to your specific needs.
- Prepare cells in growth medium overnight.
- On the next day, add 1X Fura Red AM working solution into your cell plate.
Note If your compound(s) interfere with the serum, replace the growth medium with fresh HHBS buffer before dye-loading. - Incubate the dye-loaded plate in a cell incubator at 37 °C for 30 to 60 minutes.
Note Incubating the dye for longer than 1 hour can improve signal intensities in certain cell lines. - Replace the dye working solution with HHBS or buffer of your choice (containing an anion transporter inhibitor, such as 1 mM probenecid, if applicable) to remove any excess probes.
- Add the stimulant as desired and simultaneously monitor fluorescence intensity using a fluorescence plate reader, which contains a programmable liquid handling system such as a FlexStation, at Ex/Em1 = 435/630 nm cutoff 610 nm and Ex/Em2 = 470/650 nm cutoff 630 nm.
Calculators
Common stock solution preparation
Table 1. Volume of DMSO needed to reconstitute specific mass of Fura Red, AM *CAS 149732-62-7* to given concentration. Note that volume is only for preparing stock solution. Refer to sample experimental protocol for appropriate experimental/physiological buffers.
0.1 mg | 0.5 mg | 1 mg | 5 mg | 10 mg | |
1 mM | 91.828 µL | 459.141 µL | 918.282 µL | 4.591 mL | 9.183 mL |
5 mM | 18.366 µL | 91.828 µL | 183.656 µL | 918.282 µL | 1.837 mL |
10 mM | 9.183 µL | 45.914 µL | 91.828 µL | 459.141 µL | 918.282 µL |
Molarity calculator
Enter any two values (mass, volume, concentration) to calculate the third.
Mass (Calculate) | Molecular weight | Volume (Calculate) | Concentration (Calculate) | Moles | ||||
/ | = | x | = |
Product Family
Name | Excitation (nm) | Emission (nm) |
Fura-8FF™, AM | 354 | 524 |
Fura-2, AM *CAS 108964-32-5* | 336 | 505 |
Fura-2, AM *UltraPure Grade* *CAS 108964-32-5* | 336 | 505 |
Fura-FF, AM [Fura-2FF, AM] *CAS 348079-12-9* | 336 | 505 |
Fura-8™, AM | 354 | 524 |
Calcein Red™ AM | 562 | 576 |
Fura-10™, AM | 354 | 524 |
Citations
View all 5 citations: Citation Explorer
Acute and long-term effects of cannabinoids on hypertension and kidney injury
Authors: Golosova, Daria and Levchenko, Vladislav and Kravtsova, Olha and Palygin, Oleg and Staruschenko, Alexander
Journal: Scientific reports (2022): 1--12
Authors: Golosova, Daria and Levchenko, Vladislav and Kravtsova, Olha and Palygin, Oleg and Staruschenko, Alexander
Journal: Scientific reports (2022): 1--12
Arachidonic acid-regulated calcium signaling in T cells from patients with rheumatoid arthritis promotes synovial inflammation
Authors: Ye, Zhongde and Shen, Yi and Jin, Ke and Qiu, Jingtao and Hu, Bin and Jadhav, Rohit R and Sheth, Khushboo and Weyand, Cornelia M and Goronzy, J{\"o}rg J
Journal: Nature communications (2021): 1--17
Authors: Ye, Zhongde and Shen, Yi and Jin, Ke and Qiu, Jingtao and Hu, Bin and Jadhav, Rohit R and Sheth, Khushboo and Weyand, Cornelia M and Goronzy, J{\"o}rg J
Journal: Nature communications (2021): 1--17
Cellular and Subcellular Mechanisms of Ventricular Mechano-Arrhythmogenicity
Authors: Cameron, Breanne Ashleigh
Journal: (2021)
Authors: Cameron, Breanne Ashleigh
Journal: (2021)
Role of opioid signaling in kidney damage during the development of salt-induced hypertension
Authors: Golosova, Daria and Palygin, Oleg and Bohovyk, Ruslan and Klemens, Christine A and Levchenko, Vladislav and Spires, Denisha R and Isaeva, Elena and El-Meanawy, Ashraf and Staruschenko, Alexander
Journal: Life science alliance (2020)
Authors: Golosova, Daria and Palygin, Oleg and Bohovyk, Ruslan and Klemens, Christine A and Levchenko, Vladislav and Spires, Denisha R and Isaeva, Elena and El-Meanawy, Ashraf and Staruschenko, Alexander
Journal: Life science alliance (2020)
TRPA1 channels are a source of calcium-driven cardiac mechano-arrhythmogenicity
Authors: Cameron, Breanne A and Stoyek, Matthew R and Bak, Jessi J and Quinn, T Alexander
Journal: bioRxiv (2020)
Authors: Cameron, Breanne A and Stoyek, Matthew R and Bak, Jessi J and Quinn, T Alexander
Journal: bioRxiv (2020)
References
View all 12 references: Citation Explorer
Ratiometric analysis of fura red by flow cytometry: a technique for monitoring intracellular calcium flux in primary cell subsets
Authors: Wendt ER, Ferry H, Greaves DR, Keshav S.
Journal: PLoS One (2015): e0119532
Authors: Wendt ER, Ferry H, Greaves DR, Keshav S.
Journal: PLoS One (2015): e0119532
A flow cytometric comparison of Indo-1 to fluo-3 and Fura Red excited with low power lasers for detecting Ca(2+) flux
Authors: Bailey S, Macardle PJ.
Journal: J Immunol Methods (2006): 220
Authors: Bailey S, Macardle PJ.
Journal: J Immunol Methods (2006): 220
Use of co-loaded Fluo-3 and Fura Red fluorescent indicators for studying the cytosolic Ca(2+)concentrations distribution in living plant tissue
Authors: Walczysko P, Wagner E, Albrechtova JT.
Journal: Cell Calcium (2000): 23
Authors: Walczysko P, Wagner E, Albrechtova JT.
Journal: Cell Calcium (2000): 23
Monitoring calcium in outer hair cells with confocal microscopy and fluorescence ratios of fluo-3 and fura-red
Authors: Su ZL, Li N, Sun YR, Yang J, Wang IM, Jiang SC.
Journal: Shi Yan Sheng Wu Xue Bao (1998): 323
Authors: Su ZL, Li N, Sun YR, Yang J, Wang IM, Jiang SC.
Journal: Shi Yan Sheng Wu Xue Bao (1998): 323
Problems associated with using Fura-2 to measure free intracellular calcium concentrations in human red blood cells
Authors: Blackwood AM, Sagnella GA, Mark and u ND, MacGregor GA.
Journal: J Hum Hypertens (1997): 601
Authors: Blackwood AM, Sagnella GA, Mark and u ND, MacGregor GA.
Journal: J Hum Hypertens (1997): 601
Calcium transient alternans in blood-perfused ischemic hearts: observations with fluorescent indicator fura red
Authors: Wu Y, Clusin WT.
Journal: Am J Physiol (1997): H2161
Authors: Wu Y, Clusin WT.
Journal: Am J Physiol (1997): H2161
IgG-induced Ca2+ oscillations in differentiated U937 cells; a study using laser scanning confocal microscopy and co-loaded fluo-3 and fura-red fluorescent probes
Authors: Floto RA, Mahaut-Smith MP, Somasundaram B, Allen JM.
Journal: Cell Calcium (1995): 377
Authors: Floto RA, Mahaut-Smith MP, Somasundaram B, Allen JM.
Journal: Cell Calcium (1995): 377
Localization of calcium entry through calcium channels in olfactory receptor neurones using a laser scanning microscope and the calcium indicator dyes Fluo-3 and Fura-Red
Authors: Schild D, Jung A, Schultens HA.
Journal: Cell Calcium (1994): 341
Authors: Schild D, Jung A, Schultens HA.
Journal: Cell Calcium (1994): 341
Improved sensitivity in flow cytometric intracellular ionized calcium measurement using fluo-3/Fura Red fluorescence ratios
Authors: Novak EJ, Rabinovitch PS.
Journal: Cytometry (1994): 135
Authors: Novak EJ, Rabinovitch PS.
Journal: Cytometry (1994): 135
The distribution of intracellular calcium chelator (fura-2) in a population of intact human red cells
Authors: Lew VL, Etzion Z, Bookchin RM, daCosta R, Vaananen H, Sassaroli M, Eisinger J.
Journal: Biochim Biophys Acta (1993): 152
Authors: Lew VL, Etzion Z, Bookchin RM, daCosta R, Vaananen H, Sassaroli M, Eisinger J.
Journal: Biochim Biophys Acta (1993): 152
Application notes
What's A Ratiometric Indicator
A Comparison of Fluorescent Red Calcium Indicators for Detecting Intracellular Calcium Mobilization in CHO Cells
A Meta-Analysis of Common Calcium Indicators
A New Red Fluorescent & Robust Screen Quest™ Rhod-4™ Ca2+Indicator for Screening GPCR & Ca2+ Channel Targets
A New Robust No-Wash FLIPR Calcium Assay Kit for Screening GPCR and Calcium Channel Targets
A Comparison of Fluorescent Red Calcium Indicators for Detecting Intracellular Calcium Mobilization in CHO Cells
A Meta-Analysis of Common Calcium Indicators
A New Red Fluorescent & Robust Screen Quest™ Rhod-4™ Ca2+Indicator for Screening GPCR & Ca2+ Channel Targets
A New Robust No-Wash FLIPR Calcium Assay Kit for Screening GPCR and Calcium Channel Targets
FAQ
How does Fura red work?
Are there any calcium indicators that don't require probenecid (PBC)?
Are there upgraded trypan blue derivatives for cell viability testing?
Can I intracellularly measure mitochondria calcium flux and changes in mitochondria membrane potential at the same time?
Do you offer any products for measuring intracellular calcium concentration or movement by flow cytometry?
Are there any calcium indicators that don't require probenecid (PBC)?
Are there upgraded trypan blue derivatives for cell viability testing?
Can I intracellularly measure mitochondria calcium flux and changes in mitochondria membrane potential at the same time?
Do you offer any products for measuring intracellular calcium concentration or movement by flow cytometry?