logo
AAT Bioquest

Tide Quencher™ 8WS acid [TQ8WS acid]

Related catalogs
Related products
Tide Quencher™ 2WS succinimidyl ester [TQ2WS, SE]
Tide Quencher™ 2WS maleimide [TQ2WS maleimide]
Tide Quencher™ 4WS amine [TQ4WS amine]
Tide Quencher™ 4 CPG [TQ4 CPG] *500 Å*
Tide Quencher™ 4 CPG [TQ4 CPG] *1000 Å*
Tide Quencher™ 4WS maleimide [TQ4WS maleimide]
Tide Quencher™ 4WS succinimidyl ester [TQ4WS SE]
Tide Quencher™ 4WS azide [TQ4WS azide]
Tide Quencher™ 4WS alkyne [TQ4WS alkyne]
Tide Quencher™ 5WS amine [TQ5WS amine]
Tide Quencher™ 5 CPG [TQ5 CPG] *500 Å*
Tide Quencher™ 5 CPG [TQ5 CPG] *1000 Å*
Tide Quencher™ 5WS maleimide [TQ5WS maleimide]
Tide Quencher™ 5WS succinimidyl ester [TQ5WS SE]
Tide Quencher™ 5WS alkyne [TQ5WS alkyne]
Tide Quencher™ 6WS amine [TQ6WS amine]
Tide Quencher™ 6WS maleimide [TQ6WS maleimide]
Tide Quencher™ 6WS succinimidyl ester [TQ6WS SE]
Tide Quencher™ 6WS azide [TQ6WS azide]
Tide Quencher™ 6WS alkyne [TQ6WS alkyne]
Tide Quencher™ 7WS amine [TQ7WS amine]
Tide Quencher™ 7WS maleimide [TQ7WS maleimide]
Tide Quencher™ 7WS succinimidyl ester [TQ7WS SE]
Tide Quencher™ 7WS alkyne [TQ7WS alkyne]
Tide Quencher™ 1 azide [TQ1 azide]
Tide Quencher™ 1 alkyne [TQ1 alkyne]
Tide Quencher™ 1 amine [TQ1 amine]
Tide Quencher™ 1 CPG [TQ1 CPG] *500 Å*
Tide Quencher™ 1 CPG [TQ1 CPG] *1000 Å*
Tide Quencher™ 1 maleimide [TQ1 maleimide]
Tide Quencher™ 1 phosphoramidite [TQ1 phosphoramidite]
Tide Quencher™ 1 succinimidyl ester [TQ1 SE]
Tide Quencher™ 2 amine [TQ2 amine]
Tide Quencher™ 2 CPG [TQ2 CPG] *500 Å*
Tide Quencher™ 2 CPG [TQ2 CPG] *1000 Å*
Tide Quencher™ 2 phosphoramidite [TQ2 phosphoramidite]
Tide Quencher™ 2 succinimidyl ester [TQ2 SE]
Tide Quencher™ 2 azide [TQ2 azide]
Tide Quencher™ 2 alkyne [TQ2 alkyne]
Tide Quencher™ 3 amine [TQ3 amine]
Tide Quencher™ 3 CPG [TQ3 CPG] *500 Å*
Tide Quencher™ 3 CPG [TQ3 CPG] *1000 Å*
Tide Quencher™ 3 maleimide [TQ3 maleimide]
Tide Quencher™ 3 phosphoramidite [TQ3 phosphoramidite]
Tide Quencher™ 3WS succinimidyl ester [TQ3WS SE]
Tide Quencher™ 3 succinimidyl ester [TQ3 SE]
Tide Quencher™ 3 azide [TQ3 azide]
Tide Quencher™ 3 alkyne [TQ3 alkyne]
Tide Quencher™ 2WS alkyne [TQ2WS alkyne]
Tide Quencher™ 4WS-DBCO [TQ4WS-DBCO]
Tide Quencher™ 5WS azide [TQ5WS azide]
Tide Quencher™ 7WS azide [TQ7WS azide]
Tide Quencher™ 5.1WS acid [TQ5.1WS acid]
Tide Quencher™ 5.1WS amine [TQ5.1WS amine]
Tide Quencher™ 5.1 CPG [TQ5.1 CPG] *500 Å*
Tide Quencher™ 5.1 CPG [TQ5.1 CPG] *1000 Å*
Tide Quencher™ 5.1WS maleimide [TQ5.1WS maleimide]
Tide Quencher™ 5.1WS succinimidyl ester [TQ5.1WS SE]
Tide Quencher™ 5.1WS azide [TQ5.1WS azide]
Tide Quencher™ 5.1WS alkyne [TQ5.1WS alkyne]
Tide Quencher™ 7.1WS acid [TQ7.1WS acid]
Tide Quencher™ 7.1WS amine [TQ7.1WS amine]
Tide Quencher™ 7.1 CPG [TQ7.1 CPG] *500 Å*
Tide Quencher™ 7.1 CPG [TQ7.1 CPG] *1000 Å*
Tide Quencher™ 7.1WS maleimide [TQ7.1WS maleimide]
Tide Quencher™ 7.1WS succinimidyl ester [TQ7.1WS SE]
Tide Quencher™ 7.1WS azide [TQ7.1WS azide]
Tide Quencher™ 7.1WS alkyne [TQ7.1WS alkyne]
Tide Quencher™ 7.2WS acid [TQ7.2WS acid]
Tide Quencher™ 7.2WS amine [TQ7.2WS amine]
Tide Quencher™ 7.2 CPG [TQ7.2 CPG] *500 Å*
Tide Quencher™ 7.2 CPG [TQ7.2 CPG] *1000 Å*
Tide Quencher™ 7.2WS maleimide [TQ7.2WS maleimide]
Tide Quencher™ 7.2WS succinimidyl ester [TQ7.2WS SE]
Tide Quencher™ 7.2WS azide [TQ7.2WS azide]
Tide Quencher™ 7.2WS alkyne [TQ7.2WS alkyne]
Tide Quencher™ 8 CPG [TQ8 CPG] *500 Å*
Tide Quencher™ 8WS succinimidyl ester [TQ8WS SE]
Tide Quencher™ 8 CPG [TQ8 CPG] *1000 Å*
Tide Quencher™ 3WS maleimide [TQ3 maleimide]
Show More (70)
Tide Quencher™ 8WS (TQ8WS) is a non-fluorescent molecule designed to efficiently quench the fluorescence of IR fluorophores such as ICG, iFluor® 820, iFluor® 840 and iFluor® 860. It has the longest absorption wavelength among all the commercial quenchers. TQ8WS is designed to be the most effective IR quencher with (a). much stronger absorption, and (b). much higher quenching efficiency for IR dyes. Tide Quencher™ 8WS acid is primarily used for labeling amino-modified oligonucleotides and peptides. It can be used in techniques such as polymerase chain reaction (PCR), real-time PCR, and DNA sequencing. In these applications, fluorescence signals are used to monitor the amplification or detection of specific DNA sequences. TQ8WS quenches the fluorescent signal until a specific event (like DNA strand separation or primer extension) occurs, leading to an increase in fluorescence that can be detected and quantified. Fluorescence resonance energy transfer (FRET)-based assays are widely used to detect and measure the presence of specific molecules in a sample. They involve the use of a fluorescent molecule (fluorophore) and a quencher molecule such as TQ8WS. The fluorophore emits light when excited by a specific wavelength of light, while the quencher molecule absorbs this emitted light, effectively "quenching" the fluorescence signal.
Tide Quencher™ 8WS (TQ8WS) is a non-fluorescent molecule designed to efficiently quench the fluorescence of IR fluorophores such as ICG, iFluor® 820, iFluor® 840 and iFluor® 860. It has the longest absorption wavelength among all the commercial quenchers.
Tide Quencher™ 8WS (TQ8WS) is a non-fluorescent molecule designed to efficiently quench the fluorescence of IR fluorophores such as ICG, iFluor® 820, iFluor® 840 and iFluor® 860. It has the longest absorption wavelength among all the commercial quenchers.
Tide Quencher™ 8WS (TQ8WS) is a non-fluorescent molecule designed to efficiently quench the fluorescence of IR fluorophores such as ICG, iFluor® 820, iFluor® 840 and iFluor® 860. It has the longest absorption wavelength among all the commercial quenchers.
Ordering information
Price
Unit size
Catalog Number2130
Quantity
Add to cart
Additional ordering information
Telephone1-800-990-8053
Fax1-800-609-2943
Emailsales@aatbio.com
InternationalSee distributors
Bulk requestInquire
Custom sizeInquire
ShippingStandard overnight for United States, inquire for international
Request quotation
Physical properties
Molecular weight877.90
SolventDMSO
Spectral properties
Absorbance (nm)881
Storage, safety and handling
H-phraseH303, H313, H333
Hazard symbolXN
Intended useResearch Use Only (RUO)
R-phraseR20, R21, R22
StorageFreeze (< -15 °C); Minimize light exposure
Spectrum
Product family
References
View all 50 references: Citation Explorer
Specific Targeting and Labeling of Colonic Polyps in CPC-APC Mice with Mucin 5AC Fluorescent Antibodies: A Model for Detection of Early Colon Cancer.
Authors: Turner, Michael A and Cox, Kristin E and Liu, Shanglei and Neel, Nicholas and Amirfakhri, Siamak and Nishino, Hiroto and Hosseini, Mojgan and Alcantara, Joshua A and Abd El-Hafeez, Amer Ali and Lwin, Thinzar M and Mallya, Kavita and Pisegna, Joseph R and Singh, Satish K and Ghosh, Pradipta and Hoffman, Robert M and Batra, Surinder K and Bouvet, Michael
Journal: Current issues in molecular biology (2023): 3347-3358
Performance of two clinical fluorescence imaging systems with different targeted and non-targeted near-infrared fluorophores: a cadaveric explorative study.
Authors: Chiti, Lavinia E and Husi, Benjamin and Park, Brian and Beer, Patricia and D'Orchymont, Faustine and Holland, Jason P and Nolff, Mirja C
Journal: Frontiers in veterinary science (2023): 1091842
Optimizing Axial and Peripheral Substitutions in Si-Centered Naphthalocyanine Dyes for Enhancing Aqueous Solubility and Photoacoustic Signal Intensity.
Authors: Saad, Mohammad Ahsan and Pawle, Robert and Selfridge, Scott and Contreras, Leslie and Xavierselvan, Marvin and Nguyen, Christopher D and Mallidi, Srivalleesha and Hasan, Tayyaba
Journal: International journal of molecular sciences (2023)
Preclinical assessment of IRDye800CW-labeled gastrin-releasing peptide receptor-targeting peptide for near infrared-II imaging of brain malignancies.
Authors: Zhang, Yuan and Wang, Li and Zhang, Chengkai and Zhang, Jingjing and Yuan, Linhao and Jin, Shucheng and Zhou, Wenjianlong and Guan, Xiudong and Kang, Peng and Zhang, Chuanbao and Tian, Jie and Chen, Xiaoyuan and Li, Deling and Jia, Wang
Journal: Bioengineering & translational medicine (2023): e10532
Enhancing intraoperative tumor delineation with multispectral short-wave infrared fluorescence imaging and machine learning.
Authors: Waterhouse, Dale J and Privitera, Laura and Anderson, John and Stoyanov, Danail and Giuliani, Stefano
Journal: Journal of biomedical optics (2023): 094804