Actively helping customers, employees and the global community during the coronavirus SARS-CoV-2 outbreak.  Learn more >>

D-Luciferin, potassium salt *CAS#: 115144-35-9*

Chemical structure for D-Luciferin, potassium salt *CAS#: 115144-35-9*
Chemical structure for D-Luciferin, potassium salt *CAS#: 115144-35-9*
Ordering information
Price ()
Catalog Number12505
Unit Size
Find Distributor
Additional ordering information
InternationalSee distributors
ShippingStandard overnight for United States, inquire for international
Physical properties
Molecular weight318.41
Storage, safety and handling
H-phraseH303, H313, H333
Hazard symbolXN
Intended useResearch Use Only (RUO)
R-phraseR20, R21, R22
StorageFreeze (< -15 °C); Minimize light exposure


See also: Enzymes, Luciferases
Molecular weight
Luciferin is the most popular and versatile bioluminescent substrate. The firefly luciferase/luciferin bioluminescent system is found in the firefly (Photinus pyralis) and several other beetles. Luciferase oxidizes ATP-activated luciferin through a dioxetanone intermediate. Firefly luciferase produces light by the ATP-dependent oxidation of luciferin. The 560 nm chemiluminescence from this reaction peaks within seconds, with light output that is proportional to luciferase activity when luciferin and ATP are present in excess. Firefly luciferase has long been conjugated to antibodies and used as a label in immunoassays using luciferin as the substrate for detection. Compared to HRP and alkaline phosphatase, luciferase is less tolerant to chemical modifications. One particular advantage to the enzyme is that there is low endogenous luciferase activity in mammalian tissues besides its high sensitivity. Another important use of luciferase is in the area of hygiene monitoring. The luciferase/luciferin system can be used to detect contamination because ATP, present in all living organisms, is required to produce luminescence. The main application for this type of ATP bioluminescence is quality assurance by testing surfacesin food processing plants to determine whether or not there iscontamination of eitherequipment or products.


Common stock solution preparation

Table 1. Volume of Water needed to reconstitute specific mass of D-Luciferin, potassium salt *CAS#: 115144-35-9* to given concentration. Note that volume is only for preparing stock solution. Refer to sample experimental protocol for appropriate experimental/physiological buffers.

0.1 mg0.5 mg1 mg5 mg10 mg
1 mM314.06 µL1.57 mL3.141 mL15.703 mL31.406 mL
5 mM62.812 µL314.06 µL628.121 µL3.141 mL6.281 mL
10 mM31.406 µL157.03 µL314.06 µL1.57 mL3.141 mL

Molarity calculator

Enter any two values (mass, volume, concentration) to calculate the third.

Mass (Calculate)Molecular weightVolume (Calculate)Concentration (Calculate)Moles


View all 14 citations: Citation Explorer
Andrographolide Derivatives Target the KEAP1/NRF2 Axis and Possess Potent Anti-SARS-CoV-2 Activity
Authors: Schulte, Bianca and K{\"o}nig, Maria and Escher, Beate I and Wittenburg, Sophie and Proj, Matic and Wolf, Valentina and Lemke, Carina and Schnakenburg, Gregor and Sosi{\v{c}}, Izidor and Streeck, Hendrik and others,
Journal: ChemMedChem (2022): e202100732
Magnetically empowered bone marrow cells as a micro-living motor can improve early hematopoietic reconstitution
Authors: Mai, Qiusui and Wang, Zhengyuan and Chen, Quanfeng and Zhang, Jialu and Zhang, Dingyi and Li, Chengyao and Jiang, Qianli
Journal: Cytotherapy (2022)
Diltiazem inhibits breast cancer metastasis via mediating growth differentiation factor 15 and epithelial-mesenchymal transition
Authors: Chen, Yen-Chang and Wu, Chen-Teng and Chen, Jia-Hong and Tsai, Cheng-Fang and Wu, Chen-Yun and Chang, Pei-Chun and Yeh, Wei-Lan
Journal: Oncogenesis (2022): 1--9
Cytotoxicity Burst? Differentiating Specific from Nonspecific Effects in Tox21 in Vitro Reporter Gene Assays
Authors: Escher, Beate I and Henneberger, Luise and K{\"o}nig, Maria and Schlichting, Rita and Fischer, Fabian C
Journal: Environmental health perspectives (2020): 077007
IL4I1 is a metabolic immune checkpoint that activates the AHR and promotes tumor progression
Authors: Sadik, Ahmed and Patterson, Luis F Somarribas and {\"O}zt{\"u}rk, Selcen and Mohapatra, Soumya R and Panitz, Verena and Secker, Philipp F and Pf{\"a}nder, Pauline and Loth, Stefanie and Salem, Heba and Prentzell, Mirja Tamara and others,
Journal: Cell (2020): 1252--1270
Bioluminescence reporter for monitoring G2-phase cell cycle arrest in vivo.
Authors: Yu, Jian-Bo and Jing, Ya-Jie and Jin, Zai-Shun and Li, Qi and Meng, Xiang-Yu and Chen, Zhi-Hong
Journal: Pakistan Journal of Pharmaceutical Sciences (2020)
Bioluminescence imaging of arc expression in mouse brain under acute and chronic exposure to pesticides
Authors: Izumi, Hironori and Ishimoto, Tetsuya and Yamamoto, Hiroshi and Mori, Hisashi
Journal: Neurotoxicology (2019): 52--59
Bioluminescence imaging of Arc expression in mouse brain under acute and chronic exposure to pesticides
Authors: Izumi, Hironori and Ishimoto, Tetsuya and Yamamoto, Hiroshi and Mori, Hisashi
Journal: NeuroToxicology (2018)
Application of hairless mouse strain to bioluminescence imaging of Arc expression in mouse brain
Authors: Izumi, Hironori and Ishimoto, Tetsuya and Yamamoto, Hiroshi and Mori, Hisashi
Journal: BMC neuroscience (2017): 1--9
Genome-wide microRNA analysis identifies miR-188-3p as novel prognostic marker and molecular factor involved in colorectal carcinogenesis
Authors: Pichler, Martin and Stiegelbauer, Verena and Vychytilova-Faltejskova, Petra and Ivan, Cristina and Ling, Hui and Winter, Elke and Zhang, Xinna and Goblirsch, Matthew and Wulf-Goldenberg, Annika and Ohtsuka, Masahisa and others, undefined
Journal: American Association for Cancer Research (2016): clincanres--0497


View all 113 references: Citation Explorer
Mutagenesis of solvent-exposed amino acids in Photinus pyralis luciferase improves thermostability and pH-tolerance
Authors: Law GH, G and elman OA, Tisi LC, Lowe CR, Murray JA.
Journal: Biochem J (2006): 305
Determination of p-glycoprotein ATPase activity using luciferase
Authors: Matsunaga T, Kose E, Yasuda S, Ise H, Ikeda U, Ohmori S.
Journal: Biol Pharm Bull (2006): 560
Expression of firefly luciferase in Candida albicans and its use in the selection of stable transformants
Authors: Doyle TC, Nawotka KA, Purchio AF, Akin AR, Francis KP, Contag PR.
Journal: Microb Pathog (2006): 69
PET imaging and optical imaging with D-luciferin [11C]methyl ester and D-luciferin [11C]methyl ether of luciferase gene expression in tumor xenografts of living mice
Authors: Wang JQ, Pollok KE, Cai S, Stantz KM, Hutchins GD, Zheng QH.
Journal: Bioorg Med Chem Lett (2006): 331
Bioluminescence of monolayers of firefly luciferase immobilized on graphite
Authors: Palomba S, Berovic N, Palmer RE.
Journal: Langmuir (2006): 5451
Bovine serum albumin displays luciferase-like activity in presence of luciferyl adenylate: insights on the origin of protoluciferase activity and bioluminescence colours
Authors: Viviani VR, Ohmiya Y.
Journal: Luminescence (2006): 262
Noninvasive bioluminescence imaging of luciferase expressing intracranial U87 xenografts: correlation with magnetic resonance imaging determined tumor volume and longitudinal use in assessing tumor growth and antiangiogenic treatment effect
Authors: Szentirmai O, Baker CH, Lin N, Szucs S, Takahashi M, Kiryu S, Kung AL, Mulligan RC, Carter BS.
Journal: Neurosurgery (2006): 365
Two different domains of the luciferase gene in the heterotrophic dinoflagellate Noctiluca scintillans occur as two separate genes in photosynthetic species
Authors: Liu L, Hastings JW.
Journal: Proc Natl Acad Sci U S A. (2006)
Effect of different salts and detergents on luciferin-luciferase luminescence of the enchytraeid Fridericia heliota
Authors: Rodionova NS, Petushkov VN.
Journal: J Photochem Photobiol B (2006): 123
Evaluation of firefly luciferase bioluminescence mediated photodynamic toxicity in cancer cells
Authors: Schipper ML, Patel MR, Gambhir SS.
Journal: Mol Imaging Biol (2006): 218