Actively helping customers, employees and the global community during the coronavirus SARS-CoV-2 outbreak.  Learn more >>

LysoBrite™ NIR

Image of HeLa cells stained with Cell Navigator® Lysosome Staining Kit in a Costar black wall/clear bottom 96-well plate.
Image of HeLa cells stained with Cell Navigator® Lysosome Staining Kit in a Costar black wall/clear bottom 96-well plate.
Ordering information
Price ()
Catalog Number22641
Unit Size
Find Distributor
Additional ordering information
InternationalSee distributors
ShippingStandard overnight for United States, inquire for international
Physical properties
Molecular weight730.89
Spectral properties
Excitation (nm)636
Emission (nm)651
Storage, safety and handling
Certificate of OriginDownload PDF
H-phraseH303, H313, H333
Hazard symbolXN
Intended useResearch Use Only (RUO)
R-phraseR20, R21, R22
StorageFreeze (< -15 °C); Minimize light exposure


Molecular weight
Excitation (nm)
Emission (nm)
Lysosomes are cellular organelles which contain acid hydrolase enzymes to break up waste materials and cellular debris. Lysosomes digest excess or worn-out organelles, food particles, and engulfed viruses or bacteria. The membrane around a lysosome allows the digestive enzymes to work at pH 4.5. The interior of the lysosomes is acidic (pH 4.5-4.8) compared to the slightly alkaline cytosol (pH 7.2). The lysosome maintains this pH differential by pumping protons from the cytosol across the membrane via proton pumps and chloride ion channels. LysoBrite™ NIR selectively accumulates in lysosomes probably via the lysosome pH gradient. The lysotropic indicator is a hydrophobic compound that easily permeates intact live cells, and trapped in lysosomes after it gets into cells. Its fluorescence is significantly enhanced upon entering lysosomes. This key feature significantly reduces its staining background and makes it useful for a variety of studies, including cell adhesion, chemotaxis, multidrug resistance, cell viability, apoptosis and cytotoxicity. It is suitable for proliferating and non-proliferating cells, and can be used for both suspension and adherent cells. LysoBrite™ dyes significantly outperform the equivalent LysoTracker ™dyes (from Invitrogen). LysoBrite™ dyes can stay in live cells for more than a week with very minimal cell toxicity while the LysoTracker dyes can only be used for a few hours.


Common stock solution preparation

Table 1. Volume of DMSO needed to reconstitute specific mass of LysoBrite™ NIR to given concentration. Note that volume is only for preparing stock solution. Refer to sample experimental protocol for appropriate experimental/physiological buffers.

0.1 mg0.5 mg1 mg5 mg10 mg
1 mM136.819 µL684.097 µL1.368 mL6.841 mL13.682 mL
5 mM27.364 µL136.819 µL273.639 µL1.368 mL2.736 mL
10 mM13.682 µL68.41 µL136.819 µL684.097 µL1.368 mL

Molarity calculator

Enter any two values (mass, volume, concentration) to calculate the third.

Mass (Calculate)Molecular weightVolume (Calculate)Concentration (Calculate)Moles


Open in Advanced Spectrum Viewer

Spectral properties

Excitation (nm)636
Emission (nm)651

Product family

NameExcitation (nm)Emission (nm)
LysoBrite™ Blue434480
LysoBrite™ Green501510
LysoBrite™ Orange543565
LysoBrite™ Red576596
LysoBrite™ Deep Red597619


View all 9 citations: Citation Explorer
Engineering Cardiac Small Extracellular Vesicle-Derived Vehicles with Thin-Film Hydration for Customized microRNA Loading
Authors: Bheri, Sruti and Kassouf, Brandon P and Park, Hyun-Ji and Hoffman, Jessica R and Davis, Michael E
Journal: Journal of Cardiovascular Development and Disease (2021): 135
Antitumor Activity of $\alpha$-Linolenic Acid-Paclitaxel Conjugate Nanoparticles: In vitro and in vivo
Authors: Xu, Mei-Qi and Hao, Yan-Li and Wang, Jing-Ru and Li, Zhuo-Yue and Li, Hui and Feng, Zhen-Han and Wang, Hui and Wang, Jing-Wen and Zhang, Xuan
Journal: International Journal of Nanomedicine (2021): 7269
siRNA Packaged with Neutral Cytidinyl/Cationic/PEG Lipids for Enhanced Antitumor Efficiency and Safety In Vitro and In Vivo
Authors: Zhou, Xinyang and Pan, Yufei and Li, Zheng and Li, Huantong and Wu, Jing and Ma, Yuan and Guan, Zhu and Yang, Zhenjun
Journal: ACS Applied Bio Materials (2020): 6297--6309
Daurisoline inhibits hepatocellular carcinoma progression by restraining autophagy and promoting cispaltin-induced cell death
Authors: Xue, Legang and Liu, Pei
Journal: Biochemical and Biophysical Research Communications (2020)
Anti-tumour activity of low molecular weight heparin doxorubicin nanoparticles for histone H1 high-expressive prostate cancer PC-3M cells
Authors: Zhang, Shuang and Li, Zhan-Tao and Liu, Man and Wang, Jing-Ru and Xu, Mei-Qi and Li, Zhuo-Yue and Duan, Xiao-Chuan and Hao, Yan-Li and Zheng, Xiu-Chai and Li, Hui and others, undefined
Journal: Journal of Controlled Release (2018)
Autophagy proteins are not universally required for phagosome maturation
Authors: Cemma, Marija and Grinstein, Sergio and Brumell, John H
Journal: Autophagy (2016): 1440--1446
Differential detection of tumor cells using a combination of cell rolling, multivalent binding, and multiple antibodies
Authors: Myung, Ja Hye and Gajjar, Khyati A and Chen, Jihua and Molokie, Robert E and Hong, Seungpyo
Journal: Analytical chemistry (2014): 6088--6094
Versatile fabrication of nanoscale sol--gel bioactive glass particles for efficient bone tissue regeneration
Authors: Lei, Bo and Chen, Xiaofeng and Han, Xue and Zhou, Jiaan
Journal: Journal of Materials Chemistry (2012): 16906--16913
Daniel S Han1, 3, 4, Nickolay Korabel1, Runze Chen2, Mark Johnston3, Viki J. Allan3, 4
Authors: Fedotov, Sergei and Waigh, Thomas A


View all 26 references: Citation Explorer
Requirements, features, and performance of high content screening platforms
Authors: Gough AH, Johnston PA.
Journal: Methods Mol Biol (2007): 41
A pharmaceutical company user's perspective on the potential of high content screening in drug discovery
Authors: Hoffman AF, Garippa RJ.
Journal: Methods Mol Biol (2007): 19
Optimizing the integration of immunoreagents and fluorescent probes for multiplexed high content screening assays
Authors: Giuliano KA., undefined
Journal: Methods Mol Biol (2007): 189
Past, present, and future of high content screening and the field of cellomics
Authors: Taylor DL., undefined
Journal: Methods Mol Biol (2007): 3
High-content fluorescence-based screening for epigenetic modulators
Authors: Martinez ED, Dull AB, Beutler JA, Hager GL.
Journal: Methods Enzymol (2006): 21
Application of laser-scanning fluorescence microplate cytometry in high content screening
Authors: Bowen WP, Wylie PG.
Journal: Assay Drug Dev Technol (2006): 209
High-content screening of known G protein-coupled receptors by arrestin translocation
Authors: Hudson CC, Oakley RH, Sjaastad MD, Loomis CR.
Journal: Methods Enzymol (2006): 63
Evaluation of a high-content screening fluorescence-based assay analyzing the pharmacological modulation of lipid homeostasis in human macrophages
Authors: Werner T, Liebisch G, Gr and l M, Schmitz G.
Journal: Cytometry A (2006): 200
Automated high content screening for phosphoinositide 3 kinase inhibition using an AKT 1 redistribution assay
Authors: Wolff M, Haasen D, Merk S, Kroner M, Maier U, Bordel S, Wiedenmann J, Nienhaus GU, Valler M, Heilker R.
Journal: Comb Chem High Throughput Screen (2006): 339
High concordance of drug-induced human hepatotoxicity with in vitro cytotoxicity measured in a novel cell-based model using high content screening
Authors: O'Brien P J, Irwin W, Diaz D, Howard-Cofield E, Krejsa CM, Slaughter MR, Gao B, Kaludercic N, Angeline A, Bernardi P, Brain P, Hougham C.
Journal: Arch Toxicol (2006): 580