logo
AAT Bioquest

Buccutite™ Rapid APC-Cy7 Tandem Antibody Labeling Kit *Production Scale Optimized for Labeling 1 mg Antibody Per Reaction*

Flow cytometry analysis of whole blood stained with APC-Cy7 anti-human CD4 *SK3* conjugate. The fluorescence signal was monitored using an Aurora spectral flow cytometer in the APC-Cy7 specific R7-A channel. APC-Cy7 anti-human CD4 *SK3* conjugates were prepared using the Buccutite™ Rapid APC-Cy7 Tandem Antibody Labeling Kit *Production Scale* (Cat# 5415).
Flow cytometry analysis of whole blood stained with APC-Cy7 anti-human CD4 *SK3* conjugate. The fluorescence signal was monitored using an Aurora spectral flow cytometer in the APC-Cy7 specific R7-A channel. APC-Cy7 anti-human CD4 *SK3* conjugates were prepared using the Buccutite™ Rapid APC-Cy7 Tandem Antibody Labeling Kit *Production Scale* (Cat# 5415).
Flow cytometry analysis of whole blood stained with APC-Cy7 anti-human CD4 *SK3* conjugate. The fluorescence signal was monitored using an Aurora spectral flow cytometer in the APC-Cy7 specific R7-A channel. APC-Cy7 anti-human CD4 *SK3* conjugates were prepared using the Buccutite™ Rapid APC-Cy7 Tandem Antibody Labeling Kit *Production Scale* (Cat# 5415).
Ordering information
Price
Catalog Number
Unit Size
Quantity
Add to cart
Additional ordering information
Telephone1-800-990-8053
Fax1-800-609-2943
Emailsales@aatbio.com
InternationalSee distributors
Bulk requestInquire
Custom sizeInquire
ShippingStandard overnight for United States, inquire for international
Request quotation
Spectral properties
Extinction coefficient (cm -1 M -1)700000
Excitation (nm)651
Emission (nm)779
Storage, safety and handling
H-phraseH303, H313, H333
Hazard symbolXN
Intended useResearch Use Only (RUO)
R-phraseR20, R21, R22
StorageRefrigerated (2-8 °C); Minimize light exposure
UNSPSC12171501
Related products
Buccutite™ Rapid PE Antibody Labeling Kit *Microscale Optimized for Labeling 100 ug Antibody Per Reaction*
Buccutite™ Rapid APC Antibody Labeling Kit *Microscale Optimized for Labeling 100 ug Antibody Per Reaction*
Buccutite™ Peroxidase (HRP) Antibody Conjugation Kit *Optimized for Labeling 100 ug Protein*
Buccutite™ Rapid Protein Crosslinking Kit *Microscale Optimized for Crosslinking 100 ug Antibody Per Reaction*
Buccutite™ Rapid PE Antibody Labeling Kit *Microscale Optimized for Labeling 25 ug Antibody Per Reaction*
Buccutite™ Rapid APC Antibody Labeling Kit *Microscale Optimized for Labeling 25 ug Antibody Per Reaction*
Buccutite™ Rapid PE-Cy5.5 Tandem Antibody Labeling Kit *Microscale Optimized for Labeling 100 ug Antibody Per Reaction*
Buccutite™ Rapid PE-Texas Red Tandem Antibody Labeling Kit *Microscale Optimized for Labeling 100 ug Antibody Per Reaction*
Buccutite™ Rapid PE-Cy5 Tandem Antibody Labeling Kit *Microscale Optimized for Labeling 100 ug Antibody Per Reaction*
Buccutite™ Rapid APC-Cy5.5 Tandem Antibody Labeling Kit *Microscale Optimized for Labeling 100 ug Antibody Per Reaction*
Buccutite™ Rapid APC-iFluor® 700 Tandem Antibody Labeling Kit *Microscale Optimized for Labeling 100 ug Antibody Per Reaction*
Buccutite™ Rapid PerCP Antibody Labeling Kit *Microscale Optimized for Labeling 100 ug Antibody Per Reaction*
Buccutite™ Rapid PE-Cy5 Tandem Antibody Labeling Kit *Microscale Optimized for Labeling 25 ug Antibody Per Reaction*
Buccutite™ Rapid PE-Cy5.5 Tandem Antibody Labeling Kit *Microscale Optimized for Labeling 25 ug Antibody Per Reaction*
Buccutite™ Rapid PE-Texas Red Tandem Antibody Labeling Kit *Microscale Optimized for Labeling 25 ug Antibody Per Reaction*
Buccutite™ Rapid APC-iFluor® 700 Tandem Antibody Labeling Kit *Microscale Optimized for Labeling 25 ug Antibody Per Reaction*
Buccutite™ Rapid APC-Cy5.5 Tandem Antibody Labeling Kit *Microscale Optimized for Labeling 25 ug Antibody Per Reaction*
Buccutite™ Rapid PerCP Antibody Labeling Kit *Microscale Optimized for Labeling 25 ug Antibody Per Reaction*
Buccutite™ Peroxidase (HRP) Antibody Conjugation Kit *Optimized for Labeling 25 ug Protein*
Buccutite™ Peroxidase (HRP) Antibody Conjugation Kit *Optimized for Labeling 1 mg Protein*
Buccutite™ MTA, NHS ester
Buccutite™ FOL scavenger
Buccutite™ MTA scavenger
Buccutite™ MTA-Dye 650
Buccutite™ FOL-Dye 650
Buccutite™ ALP (Alkaline Phosphatase) Antibody Conjugation Kit *Optimized for Labeling 25 ug Protein*
Buccutite™ ALP (Alkaline Phosphatase) Antibody Conjugation Kit *Optimized for Labeling 100 ug Protein*
Buccutite™ ALP (Alkaline Phosphatase) Antibody Conjugation Kit *Optimized for Labeling 1 mg Protein*
Buccutite™ Poly-HRP Antibody Conjugation Kit
Buccutite™ FOL, maleimide [FOLM]
Buccutite™ MTA, maleimide [MTAM]
Buccutite™ FOL, NHS ester
Buccutite™ Rapid trFluor™ D2 Acceptor Antibody Labeling Kit *Microscale Optimized for Labeling 100 ug Antibody Per Reaction*
Buccutite™ Streptavidin Antibody Conjugation Kit *Optimized for Labeling 25 ug Protein*
Buccutite™ Streptavidin Antibody Conjugation Kit *Optimized for Labeling 100 ug Protein*
Buccutite™ Streptavidin Antibody Conjugation Kit *Optimized for Labeling 1 mg Protein*
Buccutite™ Rapid Oligo Antibody Conjugation Kit *Optimized for Labeling 100 ug Protein*
Buccutite™ Rapid PE Antibody Labeling Kit *Production Scale Optimized for Labeling 1 mg Antibody Per Reaction*
Buccutite™ Rapid Crosslinked APC Antibody Labeling Kit *Production Scale Optimized for Labeling 1 mg Antibody Per Reaction*
Buccutite™ Rapid PerCP Antibody Labeling Kit *Production Scale Optimized for Labeling 1 mg Antibody Per Reaction*
Buccutite™ Rapid PE-Texas Red Tandem Antibody Labeling Kit *Production Scale Optimized for Labeling 1 mg Antibody Per Reaction*
Buccutite™ Rapid PE-Cy5 Tandem Antibody Labeling Kit *Production Scale Optimized for Labeling 1 mg Antibody Per Reaction*
Buccutite™ Rapid APC-iFluor® 700 Tandem Antibody Labeling Kit *Production Scale Optimized for Labeling 1 mg Antibody Per Reaction*
Buccutite™ Rapid APC-Cy5.5 Tandem Antibody Labeling Kit *Production Scale Optimized for Labeling 1 mg Antibody Per Reaction*
Show More (34)

OverviewpdfSDSpdfProtocol


Extinction coefficient (cm -1 M -1)
700000
Excitation (nm)
651
Emission (nm)
779
Buccutite™ Rapid APC-Cy7 Tandem Antibody Labeling Kits, designed for large-scale production, provide a streamlined approach for labeling antibodies with PE, APC, PerCP, and iFluor® tandem dyes. Compared to conventional protein-protein conjugation methods like the SMCC crosslinking technique, Buccutite™ conjugation is simple and more robust. Using a two-step mixing protocol, researchers can directly conjugate APC-Cy7 to any antibody or protein in less than 2 hours. Each Buccutite™ kit includes all the essential components for two labeling reactions and features a user-friendly, pre-packed spin column for maximum conjugate yield. Each Buccutite™ FOL-Activated APC-Cy7 vial provided in this kit is precisely formulated to label 1 mg of purified protein or antibody. Before labeling, it's important to remove stabilizing proteins like BSA from the sample and avoid using amine-rich buffers like Tris, which might disrupt the labeling process. Allophycocyanin-cyanine 7 (APC-Cy7) is an intensely bright, NIR fluorescent tandem fluorophore with an excitation and emission maxima of ~651 nm and ~779 nm, respectively. Given its intense brightness, APC-Cy7 is recommended for pairing with low-abundance targets to minimize spillover and compensation. APC-Cy7 conjugates are well-suited for flow cytometry, spectral flow cytometry, and other immunoassays requiring high sensitivity but not photostability. With Buccuitte™ Rapid Antibody Labeling kits, researchers can directly label primary antibodies, eliminating the need for secondary antibodies and enhancing panel-building flexibility.

Components


Example protocol


AT A GLANCE

Key Parameters to Achieve Best Performance
  1. 1.0 mg Antibody (MW ~150 kDa)

  2. Antibody concentration: 2.0 mg/mL

  3. Antibody volume: 500 µL

PREPARATION OF WORKING SOLUTION

Important

Before opening the vials, warm all components and briefly centrifuge. Immediately prepare necessary solutions before starting conjugation. This protocol is a recommendation.

Prepare Antibody Solution
  1. Prepare a 500 µL antibody solution in PBS with a concentration of 2 mg/mL.

    Note: The protein should be dissolved in 1X phosphate-buffered saline (PBS), pH 7.2 - 7.4. If the protein is dissolved in buffers containing primary amines, like Tris and/or glycine, it must be dialyzed against 1X PBS, pH 7.2 - 7.4, or use Amicon Ultra0.5, Ultracel-10 Membrane, 10 kDa (Cat No. UFC501008 from Millipore) to remove free amines or ammonium salts (such as ammonium sulfate and ammonium acetate) that are widely used for protein precipitation.

    Note: Impure antibodies or antibodies stabilized with bovine serum albumin (BSA) or gelatin will not be labeled well.

Prepare Buccutite™ MTA Solution
  1. Warm up a vial of Buccutite™ MTA (Component B) to room temperature.

  2. Add 5 µL of DMSO (not provided) to the vial of Buccutite™ MTA (Component B), and mix well by pipetting.

SAMPLE EXPERIMENTAL PROTOCOL

Run Antibody-Buccutite™ MTA Reaction
  1. Add 25 µL of Reaction Buffer (Component C) to the antibody solution.

  2. Transfer 5 µL of the reconstituted Buccutite™ MTA DMSO solution into the vial of antibody solution, and mix well by pipetting.

  3. Rotate the reaction mixture at room temperature for 1 hour, then purify using a desalting column.

Purify Antibody-Buccutite™ MTA Solution with Desalting Column
  1. Invert the provided spin column (Component D) several times to re-suspend the settled gel and remove any bubbles.

  2. Snap off the tip and place the column in a washing tube (2 mL, not provided). Remove the cap to allow the excess packing buffer to drain by gravity to the top of the gel bed.

    Note: If the column does not begin to flow, push the cap back into the column and remove it again to start the flow. Discard the drained buffer, and then place the column back into the Washing Tube. 

  3. Centrifuge at 1000 x g for 2 minutes in a swinging bucket centrifuge to remove the packing buffer. Then discard the buffer. Refer to the 'Centrifugation Notes' section below for instructions.

  4. Apply 1-2 mL 1X PBS (pH 7.2-7.4) to the column. After each application of PBS, let the buffer drain out by gravity, or centrifuge the column for 2 minutes to remove the buffer. Discard the buffer from the collection tube. Repeat this process for 3-4 times.

  5. Centrifuge at 1000 x g for 2 minutes in a swinging bucket centrifuge to remove the packing buffer. Then discard the buffer. Refer to the 'Centrifugation Notes' section below for instructions.

  6. Place the column into a clean collecting tube (1.5 mL, not provided). Then, take the antibody-Buccutite™ MTA solution from step 3 of the "Run Antibody-Buccutite™ MTA Reaction" section and load it carefully and directly into the center of the column.

  7. After loading the sample, add 40 μL of 1X PBS (pH 7.2-7.4), centrifuge the column for 2 minutes at 1,000 x g, and collect the solution that contains the desired antibody-Buccutite™ MTA solution.

Run Antibody-APC-Cy7 Conjugation Reaction
  1. Warm up a vial of Buccutite™ FOL-Activated APC-Cy7 (Component A) to room temperature.

    Note: Each vial of Buccutite™ FOL-Activated APC-Cy7 contains an optimized amount of dye to label 1 mg of IgG (MW ~150 kDa) at 2 mg/mL in PBS, the kit can also be used to label other proteins (>10 kDa).

  2. Make a Buccutite™ FOL-Activated APC-Cy7 solution by adding 130 µL of ddH2O into the vial of Buccutite™ FOL-Activated APC-Cy7 (Component A), and mix well by pipetting or vortexing.

  3. Add the purified Antibody-Buccutite™ MTA solution directly into the vial of Buccutite™ FOL-Activated APC-Cy7 solution. Rotate the mixture for 1-2 hours at room temperature.

  4. The antibody-APC-Cy7 conjugate is now ready for immediate use or can be stored at 4°C.

Purification with Size Exclusion Chromatography Recommended
  1. For optimal performance, it is recommended to purify the antibody-APC-Cy7 conjugate using size exclusion chromatography (SEC). The following SEC columns are suitable for this purpose: Superdex 200 Increase 100/300 GL (Cytiva) and ENrich™ SEC 650 10 x 300 Column (Bio-Rad).

Spectrum


Open in Advanced Spectrum Viewer
spectrum

Spectral properties

Extinction coefficient (cm -1 M -1)700000
Excitation (nm)651
Emission (nm)779

Images


References


View all 19 references: Citation Explorer
Circulating Regulatory T Cell Subsets in Patients with Sarcoidosis.
Authors: Kudryavtsev, Igor and Zinchenko, Yulia and Starshinova, Anna and Serebriakova, Maria and Malkova, Anna and Akisheva, Tatiana and Kudlay, Dmitriy and Glushkova, Anzhela and Yablonskiy, Piotr and Shoenfeld, Yehuda
Journal: Diagnostics (Basel, Switzerland) (2023)
iCoreDrop: A robust immune monitoring spectral cytometry assay with six open channels for biomarker flexibility.
Authors: Jensen, Holly A and Kim, Jeong
Journal: Cytometry. Part A : the journal of the International Society for Analytical Cytology (2022)
CD4+ T cells and natural killer cells: Biomarkers for hepatic fibrosis in human immunodeficiency virus/hepatitis C virus-coinfected patients.
Authors: Laufer, Natalia and Ojeda, Diego and Polo, María Laura and Martinez, Ana and Pérez, Héctor and Turk, Gabriela and Cahn, Pedro and Zwirner, Norberto Walter and Quarleri, Jorge
Journal: World journal of hepatology (2017): 1073-1080
Quantification of mitochondrial reactive oxygen species in living cells by using multi-laser polychromatic flow cytometry.
Authors: De Biasi, Sara and Gibellini, Lara and Bianchini, Elena and Nasi, Milena and Pinti, Marcello and Salvioli, Stefano and Cossarizza, Andrea
Journal: Cytometry. Part A : the journal of the International Society for Analytical Cytology (2016): 1106-1110
Presence of CD34(+)CD38(-)CD58(-) leukemia-propagating cells at diagnosis identifies patients at high risk of relapse with Ph chromosome-positive ALL after allo-hematopoietic SCT.
Authors: Kong, Y and Xu, L-P and Liu, Y-R and Qin, Y-Z and Sun, Y-Q and Wang, Y and Jiang, H and Jiang, Q and Chen, H and Chang, Y-J and Huang, X-J
Journal: Bone marrow transplantation (2015): 348-53
Analysis of Populations of Memory T-Helper Cells Expressing CXCR3 and CCR6 Chemokine Receptors in Peripheral Blood of Patients with Chronic Viral Hepatitis C.
Authors: Elezov, D S and Kudryavtsev, I V and Arsent'ev, N A and Basin, V V and Esaulenko, E V and Semenov, A V and Totolyan, A A
Journal: Bulletin of experimental biology and medicine (2015): 238-42
A flow cytometric method for the analysis of macrophages in the vascular wall.
Authors: Moore, Jeffrey P and Sakkal, Samy and Bullen, Michelle L and Kemp-Harper, Barbara K and Ricardo, Sharon D and Sobey, Christopher G and Drummond, Grant R
Journal: Journal of immunological methods (2013): 33-43
Combined normal donor and CLL: Single tube ZAP-70 analysis.
Authors: Degheidy, Heba A and Venzon, David J and Farooqui, Mohammed Z H and Abbasi, Fatima and Arthur, Diane C and Wilson, Wyndham H and Wiestner, Adrian and Stetler-Stevenson, M A and Marti, Gerald E
Journal: Cytometry. Part B, Clinical cytometry (2012): 67-77
The role of CD19 and CD27 in the diagnosis of multiple myeloma by flow cytometry: a new statistical model.
Authors: Cannizzo, Elisa and Carulli, Giovanni and Del Vecchio, Luigi and Ottaviano, Virginia and Bellio, Emanuele and Zenari, Ezio and Azzarà, Antonio and Petrini, Mario and Preffer, Frederic
Journal: American journal of clinical pathology (2012): 377-86
Measurement conditions for flow cytometry analyses of cell lines from urological carcinomas.
Authors: Tölle, Angelika and Abdallah, Ziyad and Jung, Klaus and Bäumler, Hans
Journal: Journal of fluorescence (2010): 779-86