logo
AAT Bioquest

Buccutite™ Rapid APC-iFluor® 700 Tandem Antibody Labeling Kit *Production Scale Optimized for Labeling 1 mg Antibody Per Reaction*

Flow cytometry analysis of PBMC stained with APC-iFluor® 700 anti-human CD4 *RPA-T4* conjugate. The fluorescence signal was monitored using an Aurora spectral flow cytometer in the APC-iFluor® 700 specific R4-A channel. APC-iFluor® 700 anti-human CD4 *RPA-T4* conjugate was prepared using the Buccutite™ Rapid APC-iFluor® 700 Tandem Antibody Labeling Kit *Production Scale* (Cat# 5413).
Flow cytometry analysis of PBMC stained with APC-iFluor® 700 anti-human CD4 *RPA-T4* conjugate. The fluorescence signal was monitored using an Aurora spectral flow cytometer in the APC-iFluor® 700 specific R4-A channel. APC-iFluor® 700 anti-human CD4 *RPA-T4* conjugate was prepared using the Buccutite™ Rapid APC-iFluor® 700 Tandem Antibody Labeling Kit *Production Scale* (Cat# 5413).
Flow cytometry analysis of PBMC stained with APC-iFluor® 700 anti-human CD4 *RPA-T4* conjugate. The fluorescence signal was monitored using an Aurora spectral flow cytometer in the APC-iFluor® 700 specific R4-A channel. APC-iFluor® 700 anti-human CD4 *RPA-T4* conjugate was prepared using the Buccutite™ Rapid APC-iFluor® 700 Tandem Antibody Labeling Kit *Production Scale* (Cat# 5413).
Ordering information
Price
Catalog Number
Unit Size
Quantity
Add to cart
Additional ordering information
Telephone1-800-990-8053
Fax1-800-609-2943
Emailsales@aatbio.com
InternationalSee distributors
Bulk requestInquire
Custom sizeInquire
ShippingStandard overnight for United States, inquire for international
Request quotation
Spectral properties
Extinction coefficient (cm -1 M -1)700000
Excitation (nm)651
Emission (nm)710
Storage, safety and handling
H-phraseH303, H313, H333
Hazard symbolXN
Intended useResearch Use Only (RUO)
R-phraseR20, R21, R22
UNSPSC12171501
Related products
Buccutite™ Rapid PE Antibody Labeling Kit *Microscale Optimized for Labeling 100 ug Antibody Per Reaction*
Buccutite™ Rapid APC Antibody Labeling Kit *Microscale Optimized for Labeling 100 ug Antibody Per Reaction*
Buccutite™ Peroxidase (HRP) Antibody Conjugation Kit *Optimized for Labeling 100 ug Protein*
Buccutite™ Rapid Protein Crosslinking Kit *Microscale Optimized for Crosslinking 100 ug Antibody Per Reaction*
Buccutite™ Rapid PE Antibody Labeling Kit *Microscale Optimized for Labeling 25 ug Antibody Per Reaction*
Buccutite™ Rapid APC Antibody Labeling Kit *Microscale Optimized for Labeling 25 ug Antibody Per Reaction*
Buccutite™ Rapid PE-Cy5.5 Tandem Antibody Labeling Kit *Microscale Optimized for Labeling 100 ug Antibody Per Reaction*
Buccutite™ Rapid PE-Cy7 Tandem Antibody Labeling Kit *Microscale Optimized for Labeling 100 ug Antibody Per Reaction*
Buccutite™ Rapid PE-Texas Red Tandem Antibody Labeling Kit *Microscale Optimized for Labeling 100 ug Antibody Per Reaction*
Buccutite™ Rapid PE-Cy5 Tandem Antibody Labeling Kit *Microscale Optimized for Labeling 100 ug Antibody Per Reaction*
Buccutite™ Rapid APC-Cy5.5 Tandem Antibody Labeling Kit *Microscale Optimized for Labeling 100 ug Antibody Per Reaction*
Buccutite™ Rapid APC-Cy7 Tandem Antibody Labeling Kit *Microscale Optimized for Labeling 100 ug Antibody Per Reaction*
Buccutite™ Rapid PerCP Antibody Labeling Kit *Microscale Optimized for Labeling 100 ug Antibody Per Reaction*
Buccutite™ Rapid PE-Cy5 Tandem Antibody Labeling Kit *Microscale Optimized for Labeling 25 ug Antibody Per Reaction*
Buccutite™ Rapid PE-Cy5.5 Tandem Antibody Labeling Kit *Microscale Optimized for Labeling 25 ug Antibody Per Reaction*
Buccutite™ Rapid PE-Cy7 Tandem Antibody Labeling Kit *Microscale Optimized for Labeling 25 ug Antibody Per Reaction*
Buccutite™ Rapid PE-Texas Red Tandem Antibody Labeling Kit *Microscale Optimized for Labeling 25 ug Antibody Per Reaction*
Buccutite™ Rapid APC-Cy5.5 Tandem Antibody Labeling Kit *Microscale Optimized for Labeling 25 ug Antibody Per Reaction*
Buccutite™ Rapid APC-Cy7 Tandem Antibody Labeling Kit *Microscale Optimized for Labeling 25 ug Antibody Per Reaction*
Buccutite™ Rapid PerCP Antibody Labeling Kit *Microscale Optimized for Labeling 25 ug Antibody Per Reaction*
Buccutite™ Peroxidase (HRP) Antibody Conjugation Kit *Optimized for Labeling 25 ug Protein*
Buccutite™ Peroxidase (HRP) Antibody Conjugation Kit *Optimized for Labeling 1 mg Protein*
Buccutite™ MTA, NHS ester
Buccutite™ FOL scavenger
Buccutite™ MTA scavenger
Buccutite™ MTA-Dye 650
Buccutite™ FOL-Dye 650
Buccutite™ ALP (Alkaline Phosphatase) Antibody Conjugation Kit *Optimized for Labeling 25 ug Protein*
Buccutite™ ALP (Alkaline Phosphatase) Antibody Conjugation Kit *Optimized for Labeling 100 ug Protein*
Buccutite™ ALP (Alkaline Phosphatase) Antibody Conjugation Kit *Optimized for Labeling 1 mg Protein*
Buccutite™ Poly-HRP Antibody Conjugation Kit
Buccutite™ FOL, maleimide [FOLM]
Buccutite™ MTA, maleimide [MTAM]
Buccutite™ FOL, NHS ester
Buccutite™ Rapid trFluor™ D2 Acceptor Antibody Labeling Kit *Microscale Optimized for Labeling 100 ug Antibody Per Reaction*
Buccutite™ Streptavidin Antibody Conjugation Kit *Optimized for Labeling 25 ug Protein*
Buccutite™ Streptavidin Antibody Conjugation Kit *Optimized for Labeling 100 ug Protein*
Buccutite™ Streptavidin Antibody Conjugation Kit *Optimized for Labeling 1 mg Protein*
Buccutite™ Rapid Oligo Antibody Conjugation Kit *Optimized for Labeling 100 ug Protein*
Buccutite™ Rapid PE Antibody Labeling Kit *Production Scale Optimized for Labeling 1 mg Antibody Per Reaction*
Buccutite™ Rapid Crosslinked APC Antibody Labeling Kit *Production Scale Optimized for Labeling 1 mg Antibody Per Reaction*
Buccutite™ Rapid PerCP Antibody Labeling Kit *Production Scale Optimized for Labeling 1 mg Antibody Per Reaction*
Buccutite™ Rapid PE-Cy7 Tandem Antibody Labeling Kit *Production Scale Optimized for Labeling 1 mg Antibody Per Reaction*
Buccutite™ Rapid PE-Texas Red Tandem Antibody Labeling Kit *Production Scale Optimized for Labeling 1 mg Antibody Per Reaction*
Buccutite™ Rapid PE-Cy5 Tandem Antibody Labeling Kit *Production Scale Optimized for Labeling 1 mg Antibody Per Reaction*
Buccutite™ Rapid APC-Cy5.5 Tandem Antibody Labeling Kit *Production Scale Optimized for Labeling 1 mg Antibody Per Reaction*
Buccutite™ Rapid APC-Cy7 Tandem Antibody Labeling Kit *Production Scale Optimized for Labeling 1 mg Antibody Per Reaction*
Show More (37)

OverviewpdfSDSpdfProtocol


Extinction coefficient (cm -1 M -1)
700000
Excitation (nm)
651
Emission (nm)
710
Buccutite™ Rapid APC-iFluor® 700 Tandem Antibody Labeling Kits, designed for large-scale production, provide a streamlined approach for labeling antibodies with PE, APC, PerCP, and iFluor® tandem dyes. Compared to conventional protein-protein conjugation methods like the SMCC crosslinking technique, Buccutite™ conjugation is simple and more robust. Using a two-step mixing protocol, researchers can directly conjugate APC-iFluor® 700 to any antibody or protein in less than 2 hours. Each Buccutite™ kit includes all the essential components for two labeling reactions and features a user-friendly, pre-packed spin column for maximum conjugate yield. Each Buccutite™ FOL-Activated APC-iFluor® 700 vial provided in this kit is precisely formulated to label 1 mg of purified protein or antibody. Before labeling, it's important to remove stabilizing proteins like BSA from the sample and avoid using amine-rich buffers like Tris, which might disrupt the labeling process. Allophycocyanin-iFluor® 700 (APC-iFluor® 700) is an intensely bright, NIR fluorescent tandem fluorophore with an excitation and emission maxima of ~651 nm and ~710 nm, respectively. Given its intense brightness, APC-iFluor® 700 is recommended for pairing with low-abundance targets to minimize spillover and compensation. APC-iFluor® 700 conjugates are well-suited for flow cytometry, spectral flow cytometry, and other immunoassays requiring high sensitivity but not photostability. With Buccuitte™ Rapid Antibody Labeling kits, researchers can directly label primary antibodies, eliminating the need for secondary antibodies and enhancing panel-building flexibility.

Components


Example protocol


AT A GLANCE

Key Parameters to Achieve Best Performance
  1. 1.0 mg Antibody (MW ~150 kDa)

  2. Antibody concentration: 2.0 mg/mL

  3. Antibody volume: 500 µL

PREPARATION OF WORKING SOLUTION

Important

Before opening the vials, warm all components and briefly centrifuge. Immediately prepare necessary solutions before starting conjugation. This protocol is a recommendation.

Prepare Antibody Solution
  1. Prepare a 500 µL antibody solution in PBS with a concentration of 2 mg/mL.

    Note: The protein should be dissolved in 1X phosphate-buffered saline (PBS), pH 7.2 - 7.4. If the protein is dissolved in buffers containing primary amines, like Tris and/or glycine, it must be dialyzed against 1X PBS, pH 7.2 - 7.4, or use Amicon Ultra0.5, Ultracel-10 Membrane, 10 kDa (Cat No. UFC501008 from Millipore) to remove free amines or ammonium salts (such as ammonium sulfate and ammonium acetate) that are widely used for protein precipitation.

    Note: Impure antibodies or antibodies stabilized with bovine serum albumin (BSA) or gelatin will not be labeled well.

Prepare Buccutite™ MTA Solution
  1. Warm up a vial of Buccutite™ MTA (Component B) to room temperature.

  2. Add 5 µL of DMSO (not provided) to the vial of Buccutite™ MTA (Component B), and mix well by pipetting.

SAMPLE EXPERIMENTAL PROTOCOL

Run Antibody-Buccutite™ MTA Reaction
  1. Add 25 µL of Reaction Buffer (Component C) to the antibody solution.

  2. Transfer 5 µL of the reconstituted Buccutite™ MTA DMSO solution into the vial of antibody solution, and mix well by pipetting.

  3. Rotate the reaction mixture at room temperature for 1 hour, then purify using a desalting column.

Purify Antibody-Buccutite™ MTA Solution with Desalting Column
  1. Invert the provided spin column (Component D) several times to re-suspend the settled gel and remove any bubbles.

  2. Snap off the tip and place the column in a washing tube (2 mL, not provided). Remove the cap to allow the excess packing buffer to drain by gravity to the top of the gel bed.

    Note: If the column does not begin to flow, push the cap back into the column and remove it again to start the flow. Discard the drained buffer, and then place the column back into the Washing Tube. 

  3. Centrifuge at 1000 x g for 2 minutes in a swinging bucket centrifuge to remove the packing buffer. Then discard the buffer. Refer to the 'Centrifugation Notes' section below for instructions.

  4. Apply 1-2 mL 1X PBS (pH 7.2-7.4) to the column. After each application of PBS, let the buffer drain out by gravity, or centrifuge the column for 2 minutes to remove the buffer. Discard the buffer from the collection tube. Repeat this process for 3-4 times.

  5. Centrifuge at 1000 x g for 2 minutes in a swinging bucket centrifuge to remove the packing buffer. Then discard the buffer. Refer to the 'Centrifugation Notes' section below for instructions.

  6. Place the column into a clean collecting tube (1.5 mL, not provided). Then, take the antibody-Buccutite™ MTA solution from step 3 of the "Run Antibody-Buccutite™ MTA Reaction" section and load it carefully and directly into the center of the column.

  7. After loading the sample, add 40 μL of 1X PBS (pH 7.2-7.4), centrifuge the column for 2 minutes at 1,000 x g, and collect the solution that contains the desired antibody-Buccutite™ MTA solution.

Run Antibody-APC-iFluor® 700 Conjugation Reaction
  1. Warm up a vial of Buccutite™ FOL-Activated APC-iFluor® 700 (Component A) to room temperature.

    Note: Each vial of Buccutite™ FOL-Activated APC-iFluor® 700 contains an optimized amount of dye to label 1 mg of IgG (MW ~150 kDa) at 2 mg/mL in PBS, the kit can also be used to label other proteins (>10 kDa).

  2. Make a Buccutite™ FOL-Activated APC-iFluor® 700 solution by adding 130 µL of ddH2O into the vial of Buccutite™ FOL-Activated APC-iFluor® 700 (Component A), and mix well by pipetting or vortexing.

  3. Add the purified Antibody-Buccutite™ MTA solution directly into the vial of Buccutite™ FOL-Activated APC-iFluor® 700 solution. Rotate the mixture for 1-2 hours at room temperature.

  4. The antibody-APC-iFluor® 700 conjugate is now ready for immediate use or can be stored at 4°C.

Purification with Size Exclusion Chromatography Recommended
  1. For optimal performance, it is recommended to purify the antibody-APC-iFluor® 700 conjugate using size exclusion chromatography (SEC). The following SEC columns are suitable for this purpose: Superdex 200 Increase 100/300 GL (Cytiva) and ENrich™ SEC 650 10 x 300 Column (Bio-Rad).

Spectrum


Open in Advanced Spectrum Viewer
spectrum

Spectral properties

Extinction coefficient (cm -1 M -1)700000
Excitation (nm)651
Emission (nm)710

Product Family


Images


References


View all 19 references: Citation Explorer
Circulating Regulatory T Cell Subsets in Patients with Sarcoidosis.
Authors: Kudryavtsev, Igor and Zinchenko, Yulia and Starshinova, Anna and Serebriakova, Maria and Malkova, Anna and Akisheva, Tatiana and Kudlay, Dmitriy and Glushkova, Anzhela and Yablonskiy, Piotr and Shoenfeld, Yehuda
Journal: Diagnostics (Basel, Switzerland) (2023)
Development of Porcine Monoclonal Antibodies with In Vitro Neutralizing Activity against Classical Swine Fever Virus from C-Strain E2-Specific Single B Cells.
Authors: Wang, Lihua and Madera, Rachel and Li, Yuzhen and Gladue, Douglas P and Borca, Manuel V and McIntosh, Michael T and Shi, Jishu
Journal: Viruses (2023)
Deciphering the role of the conjugate's phycoerythrin label in complement-mediated interference occurring in HLA single antigen Luminex bead assays.
Authors: Devriese, Magali and Hays, Constantin and Jouffrey, Julie and Usureau, Cédric and Carmagnat, Maryvonnick and Caillat-Zucman, Sophie and Taupin, Jean Luc
Journal: HLA (2022): 573-579
iCoreDrop: A robust immune monitoring spectral cytometry assay with six open channels for biomarker flexibility.
Authors: Jensen, Holly A and Kim, Jeong
Journal: Cytometry. Part A : the journal of the International Society for Analytical Cytology (2022)
Natural exosome-like nanovesicles from edible tea flowers suppress metastatic breast cancer via ROS generation and microbiota modulation.
Authors: Chen, Qiubing and Li, Qian and Liang, Yuqi and Zu, Menghang and Chen, Nanxi and Canup, Brandon S B and Luo, Liyong and Wang, Chenhui and Zeng, Liang and Xiao, Bo
Journal: Acta pharmaceutica Sinica. B (2022): 907-923
Multifunctional Silica-Based Nanoparticles with Controlled Release of Organotin Metallodrug for Targeted Theranosis of Breast Cancer.
Authors: Ovejero Paredes, Karina and Díaz-García, Diana and García-Almodóvar, Victoria and Lozano Chamizo, Laura and Marciello, Marzia and Díaz-Sánchez, Miguel and Prashar, Sanjiv and Gómez-Ruiz, Santiago and Filice, Marco
Journal: Cancers (2020)
Alpha-MSH Targeted Liposomal Nanoparticle for Imaging in Inflammatory Bowel Disease (IBD).
Authors: Peñate-Medina, Tuula and Damoah, Christabel and Benezra, Miriam and Will, Olga and Kairemo, Kalevi and Humbert, Jana and Sebens, Susanne and Peñate-Medina, Oula
Journal: Current pharmaceutical design (2020): 3840-3846
Photobleaching Comparison of R-Phycoerythrin-Streptavidin and Streptavidin-Alexa Fluor 568 in a Breast Cancer Cell Line.
Authors: Ostad, Seyed Nasser and Babaei, Sepideh and Bayat, Ali Ahmad and Mahmoudian, Jafar
Journal: Monoclonal antibodies in immunodiagnosis and immunotherapy (2019): 25-29
Novel PSCA targeting scFv-fusion proteins for diagnosis and immunotherapy of prostate cancer.
Authors: Kessler, Claudia and Pardo, Alessa and Tur, Mehmet K and Gattenlöhner, Stefan and Fischer, Rainer and Kolberg, Katharina and Barth, Stefan
Journal: Journal of cancer research and clinical oncology (2017): 2025-2038
[Changes of monocyte and monocyte-platelet aggregates in different subgroups of thrombotic events in patients with acute myocardial infarction during PCI].
Authors: Wang, Sheng and Sun, Cuifang and Liao, Wang and Wu, Zhongwei and Wang, Yudai and Huang, Xiuxian and Lu, Sijia and Dong, Xiaoli and Shuai, Fujie and Li, Bin
Journal: Xi bao yu fen zi mian yi xue za zhi = Chinese journal of cellular and molecular immunology (2017): 959-965