Actively helping customers, employees and the global community during the coronavirus SARS-CoV-2 outbreak.  Learn more >>

Cy5 tertrazine [Cy5 tertrazine]

Chemical structure for Cy5 tertrazine [Cy5  tertrazine]
Chemical structure for Cy5 tertrazine [Cy5  tertrazine]
Ordering information
Price ()Discontinued
Catalog Number911
Unit Size
Find Distributor
Additional ordering information
Telephone1-408-733-1055
Fax1-408-733-1304
Emailsales@aatbio.com
InternationalSee distributors
ShippingStandard overnight for United States, inquire for international
Physical properties
Molecular weight934.11
SolventDMSO
Spectral properties
Correction Factor (260 nm)0.02
Correction Factor (280 nm)0.03
Correction Factor (482 nm)0.009
Correction Factor (565 nm)0.09
Extinction coefficient (cm -1 M -1)2500001
Excitation (nm)651
Emission (nm)670
Quantum yield0.271, 0.42
Storage, safety and handling
H-phraseH303, H313, H333
Hazard symbolXN
Intended useResearch Use Only (RUO)
R-phraseR20, R21, R22
StorageFreeze (< -15 °C); Minimize light exposure
UNSPSC12171501

OverviewpdfSDSpdfProtocol


Molecular weight
934.11
Correction Factor (260 nm)
0.02
Correction Factor (280 nm)
0.03
Correction Factor (482 nm)
0.009
Correction Factor (565 nm)
0.09
Extinction coefficient (cm -1 M -1)
2500001
Excitation (nm)
651
Emission (nm)
670
Quantum yield
0.271, 0.42
The tetrazine-trans-cyclooctene (TCO) ligation constitutes a non-toxic biomolecule labeling method of unparalleled speed. A tetrazine-functionalized molecule reacts with a TCO-functionalized molecule, forming a stable conjugate via a dihydropyrazine moiety. This inverse electron demand cycloaddition reaction has gained popularity due to the potential for extremely fast cycloaddition kinetics with TCO as the dienophile. AAT Bioquest offers a group of tetrazine- and TCO-containing dyes for exploring various biological systems that can use this poweful click reaction. Cy5-tetrazine has been used to label biological molecules for fluorescence imaging and other fluorescence-based biochemical analysis. It is widely used for labeling peptides, proteins and oligos etc.

Calculators


Common stock solution preparation

Table 1. Volume of DMSO needed to reconstitute specific mass of Cy5 tertrazine [Cy5 tertrazine] to given concentration. Note that volume is only for preparing stock solution. Refer to sample experimental protocol for appropriate experimental/physiological buffers.

0.1 mg0.5 mg1 mg5 mg10 mg
1 mM107.054 µL535.269 µL1.071 mL5.353 mL10.705 mL
5 mM21.411 µL107.054 µL214.108 µL1.071 mL2.141 mL
10 mM10.705 µL53.527 µL107.054 µL535.269 µL1.071 mL

Molarity calculator

Enter any two values (mass, volume, concentration) to calculate the third.

Mass (Calculate)Molecular weightVolume (Calculate)Concentration (Calculate)Moles
/=x=

Spectrum


Open in Advanced Spectrum Viewer
spectrum

Spectral properties

Correction Factor (260 nm)0.02
Correction Factor (280 nm)0.03
Correction Factor (482 nm)0.009
Correction Factor (565 nm)0.09
Extinction coefficient (cm -1 M -1)2500001
Excitation (nm)651
Emission (nm)670
Quantum yield0.271, 0.42

Product family


NameExcitation (nm)Emission (nm)Extinction coefficient (cm -1 M -1)Quantum yieldCorrection Factor (260 nm)Correction Factor (280 nm)Correction Factor (482 nm)Correction Factor (565 nm)
Cy5 phosphoramidite65167025000010.271, 0.420.020.030.0090.09
Cy5 tyramide65167025000010.271, 0.420.020.030.0090.09
Cy5 tetrazine65167025000010.271, 0.420.020.030.0090.09
Cy5 aldehyde65167025000010.271, 0.420.020.030.0090.09
DBCO-Cy565167025000010.271, 0.420.020.030.0090.09

Citations


View all 1 citations: Citation Explorer

References


View all 49 references: Citation Explorer
Beyond click chemistry - supramolecular interactions of 1,2,3-triazoles
Authors: Schulze B, Schubert US.
Journal: Chem Soc Rev (2014): 2522
Calixarene-based chemosensors by means of click chemistry
Authors: Song M, Sun Z, Han C, Tian D, Li H, Kim JS.
Journal: Chem Asian J (2014): 2344
Use of click-chemistry in the development of peptidomimetic enzyme inhibitors
Authors: Fabbrizzi P, Menchi G, Guarna A, Trabocchi A.
Journal: Curr Med Chem (2014): 1467
Applications of copper-catalyzed click chemistry in activity-based protein profiling
Authors: Martell J, Weerapana E.
Journal: Molecules (2014): 1378
'Click chemistry' for diagnosis: a patent review on exploitation of its emerging trends
Authors: M, undefined and hare A, Banerjee P, Bhutkar S, Hirwani R.
Journal: Expert Opin Ther Pat (2014): 1287
Specific and quantitative labeling of biomolecules using click chemistry
Authors: Horisawa K., undefined
Journal: Front Physiol (2014): 457
A dynamic duo: pairing click chemistry and postpolymerization modification to design complex surfaces
Authors: Arnold RM, Patton DL, Popik VV, Locklin J.
Journal: Acc Chem Res (2014): 2999
Applications of azide-based bioorthogonal click chemistry in glycobiology
Authors: Zhang X, Zhang Y.
Journal: Molecules (2013): 7145
Peptide conjugation via CuAAC 'click' chemistry
Authors: Ahmad Fuaad AA, Azmi F, Skwarczynski M, Toth I.
Journal: Molecules (2013): 13148
In situ click chemistry: from small molecule discovery to synthetic antibodies
Authors: Millward SW, Agnew HD, Lai B, Lee SS, Lim J, Nag A, Pitram S, Rohde R, Heath JR.
Journal: Integr Biol (Camb) (2013): 87